探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
[设计说明]:只给出情景故事,感知了一个大数,这样还不能引起学生对大数的深刻认识,所以再给出宇宙星空中的这些大数,让学生读读、看看这些数,引起学生强烈的认知上的冲突,形成一种心理上的想读、想写的求知欲望。(二)、引出问题、探索新知在上面的例子中,我们遇到了几个很大的数,看起来、读起来、写起来都不方便,有没有简单的表示法呢?分以下步骤完成。1、回忆100 ,1000,10000,能写成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由学生完成上面4个例子中的数的表示。(学生对160 000 000 000这个数可能表示为、16×1010,教师要利用学生这种错误,强调a的范围)4、教师给出科学记数法表示:a×10( )(1≤a<10)。[设计说明]:通过层层递进的探究设计,启发学生成功地发现“科学记数法”的表示方法,同时又通过学生示错,让学生记住a的范围,体现了以学生为主的探究式教学。
解析:水是生命之源,节约水资源是我们每个居民都应有的意识.题中给出假如每人浪费一点水,当人数增多时,将是一个非常惊人的数字,100万人每天浪费的水资源为1000000×0.32=320000(升).所以320000=3.2×105.故选B.方法总结:从实际问题入手让学生体会科学记数法的实际应用.题中没有直接给出数据,应先计算,再表示.探究点二:将用科学记数法表示的数转换为原数已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.三、板书设计借助身边熟悉的事物进一步体会大数,积累数学活动经验,发展数感、空间感,培养学生自主学习的能力.
光年是表示较大距离的一个单位, 而纳米(nanometer)则是表示微小距离的单位。1纳米= 米,即1米= 纳米。我们通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可见,1毫米= 纳米,容易算出,1纳米相当于1毫米的一百万分之一。可想而知,1纳米是多么的小。超微粒子的大小一般在1~100 纳米范围内,故又称纳米粒子。纳米粒子的尺寸小,表面积大,具有高度的活性。因此,利用纳米粒子可制备活性极高的催化剂,在火箭固体燃料中掺入铝的纳米微粒,可提高燃烧效率若干倍。利用铁磁纳米材料具有很高矫顽力的特点,可制成磁性信用卡、磁性钥匙,以及高性能录像带等 。利用纳米材料等离子共振频率的可调性可制成隐形飞机的涂料。纳米材料的表面积大,对外界环境(物理的和化学的)十分敏感,在制造传感器方面是有前途的材料,目前已开发出测量温度、热辐射和检测各种特定气体的传感器。在生物和医学中也有重要应用。纳米材料科学是20世纪80年代末诞生并正在崛起的科技新领域,它将成为跨世纪的科技热点之一。
12-16岁年龄段上,教育学和心理学把这一阶段称为“少年期”这段时间上,心理和生理变化比较迅速,身心各方面都比较矛盾。父母要高度重视对这一关键期和危险期的监护和把关。这一时期他们精力充沛,好奇心强,任何事总想试一试,但他们的愿望与自己的实际能力是有很大的矛盾的,他们的独立性增强了,总想摆脱对教师和家长的信赖,总认为自己不是孩子了。有事不愿和父母及师长交流,处于一种半封闭状态,和同龄人诉说又冒着曝光的危险,所以他们感觉没有朋友没有人可以理解他们,特别是处于青春期的女生这种会更加强烈。他们的情感很脆弱,最容易冲动,做事也很莽撞,后果意识能力差,前些日子《齐鲁晚报》上刊登一篇三个初中生因完不成作业,学习成绩差,被老师批评,家长训斥,联合出走,后在济南天桥下被人发现。便是一个典型的例子。
很荣幸这天能担当XXX先生和XXX小姐的证婚人,在这神圣而庄严温馨而浪漫的时刻,与大家共同证明这对新人开始甜蜜的新生活,愉悦扬帆启航。新郎聪明善良,英俊潇洒,新娘天生丽质,美丽动人,真是珠联璧合,佳偶天成。期望未来的新郎成为一个新好男生,做到太太出门要随从,太太命令要服从,太太错了要盲从,太太化妆要等得,太太花钱要舍得,太太生日要记得,太太打骂要忍得。当然也期望新娘成为一个好女生,要懂得温柔体贴,持家有道,贤良淑德。不好总说我的眼里只有你,除了彼此,还要把父母放在心里,用你们的拳拳赤子之心报答那比天高,比海深,比火热,比金真的养育之恩。人生漫漫,期望你们在以后的道路上相互扶持,举案齐眉,愉悦到白头
一、各领域发展目标语言1、能有意识的注意倾听,能听懂所接受的语言,理解对话和儿童文学作品的主要意思。2、愿意当众表达,表达是自然,从容,自信。3、在充分感知的前提下,能够初步整理已有感知经验,发现事物的简单规律,并用语言表达出来。4、会复述,仿编,创编简单的儿童文学作品,会用多种形式表现并保留自己的作品。
二、积极开展“管理效益年”活动,做好服务保障工作20x年,我们继续坚持把“工作按时、数据准确、资料齐全”作为部工作的出发点和准则,并紧紧围绕公司的方针目标,积极开展“管理效益年”活动,从人员、技术质量、设备、等方面做好了服务保障工作。我们严格按照质量体系文件要求把好重要测量技术文件的审核关。如对测量技术设计书、测量控制网点验证报告、项目工程归档资料等的审核,做到认真细致,层层把关,确保技术文件的准确性和可靠性。并在学习新知识的过程中少走弯路,组织学习并到其他施工中的现场去学习我们的不足之处并加以改正。
房产:a夫妻双方婚后购有坐落在×路×号×小区×栋×单元×号的楼房一套,登记在男方/女方(或双方)名下,属夫妻共有财产。离婚后,该套房屋归男方/女方所有(注:包括房内装修内附属设施及相关配套设施),双方相互配合办理产权变更登记手续。因办理产权变更登记手续所应支付的一切税费等均由男方/女方承担。取得房屋所有权的一方给予另一方经济补偿人民币×××元,在本协议签订之日起×日内付清。
(1)存款:双方名下现有银行存款共____元,双方各分一半,为______元。分配方式:各自名下的存款保持不变,但男方女方应于____年__月__日前一次性支付____元给女方男方。(2)房屋:夫妻共同所有的位于×××的房地产所有权归方所有。
(1)存款:双方名下现有银行存款共______元,双方各分一半,为______元。分配方式:各自名下的存款保持不变,但男方/女方应于________年____月____日前一次性支付元给女方/男方。
实践中很多当事人特别是女方希望一次性支付孩子的抚养费用,根据有关司法解释和司法实践来看,当事人的这种要求往往得不到法院的支持。法院判决或调解一次性支付孩子的抚养费的情况往往具备以下几个条件:一方要求一次性支付;另一方同意一次性支付;另一方完全有一次性支付的能力;不损害他人权益。也就是说,如果另一方不同意一次性给付孩子的抚养费,法院很难支持一方一次性支付抚养费的诉讼请求。
双方确认在婚姻关系存续期间没有发生任何共同债务,任何一方如对外负有债务的,由负债方自行承担。(___方于__年__月__日向所借债务由__方自行承担……)
女儿___________由乙方抚养,随同乙方生活,抚养费由甲、乙双方分摊,甲方每月支付女儿抚养费(包括医疗费、教育费、保险费)_______元(大写:________________),甲方应于每月的05日前将女儿的抚养费转账到乙方指定的__________银行账户内,账号:_________________________。如果女儿抚养期间产生一次性大额支出的,双方可再协商解决;
⑴存款:双方名下现有银行存款共_ 元,双方各分一半,为_____元。分配方式:各自名下的存款保持不变,但男方/女方应于_____年___月___日前一次性支付_____元给女方/男方。
本协议的所有方面均应适用中华人民共和国法律进行解释并受其约束。因本协议所引起的或与本协议有关的任何纠纷或争议(包括关于本协议约定条款之存在、效力或终止,或无效之后果等争议)应提交予深圳国际贸易仲裁委员会在深圳仲裁并由其按照该仲裁委员会届时有效之仲裁规则作出最终裁决。