2.作者要说的是山水画的意境,为什么要在第一部分大篇幅分析诗歌的意境。明确:按照作者的观点,“孤帆远影碧空尽,唯见长江天际流”两句,完全描写自然的景色,然而就在这两句里,使人深深体会到诗人与朋友的深厚友情。描写自然的景色与绘出景色无异,且作者提到“意境就是景与情的结合”,可见诗歌中的意境与山水画的意境是相通的,并无二致。因此,作者在这里以已经学习过的诗歌意境为例,也就能更好地诠释山水画的意境。3.“意境的产生,有赖于思想感情,而思想感情的产生,又与对客观事物认识的深度有关。”作者是如何论述此观点的?你认为这个观点正确吗,请结合你的个人经历做简要说明。明确:作者以齐白石画虾为例来论证了他的观点。这个观点正确,如我们知道松树的耐寒可以象征它的坚忍,而当我们在雪地里认真观察,会发现只有松树傲然长青,松针贯穿积雪依然向上,此刻,我们会真正感受到这种坚忍的品质是那样真实。
目标导学三:深入理解,体会“无言之美”1.请你结合作者的任意一则论据,说说你对“无言之美”的感受。明确:正如作者探讨文学作品时的数个例子,诗歌本是极其简短的几句话,但是其包含的意境却是极其宽广的。如“大漠孤烟直,长河落日圆”,言语只有短短的十个字,但是读来却似看见大漠的宽阔宏伟之景,悲凉之意,予人以悲凉雄壮的美感。然而,作者要描写出这宽阔宏伟之景,悲凉之意,恐怕书万言都难以说尽,这不是意味着作者将它们寓于无言之中了吗?这就是古典文学中深蕴的无言之美。2.拓展延伸:品味下面一段话,说说你品味到“无言之美”的例子。拿美术来表现思想和情感,与其尽量流露,不如稍有含蓄;与其吐肚子把一切都说出来,不如留一大部分让欣赏者自己去领会。因为在欣赏者的头脑里所产生的印象和美感,有含蓄比较尽量流露的还要更加深刻。
三、班会重点: 通过对逆行之人的了解,同学们产生共情,思考“逆行之人”的人生观、世界观和价值观; 激发学生的感恩之心和爱国之情,思考我们可以做些什么。 四、课前准备: 1.教师:班级教案、课件、新闻、图片 2.学生:搜索在本次疫情中履行和未履行公民责任的民众新闻,并思考自己作为一名小学生,可以在本次疫情中肩负起哪些责任? 五、活动流程:
一、创设情境,谈话导入。 1、谈话:炎热的夏天悄悄来到了,你最喜欢参加夏天的什么活动? 2、创设情境,激发幼儿的兴趣。播放海滩的游泳景象的录像,激发幼儿参加的热情,创设一起外出去游泳的情境。 二、引导自主选择、辨析,学会饮食卫生。 1、创设情境:在途中大家口渴难忍,要购买水果、饮料。 2、出示水果,幼儿自主选择、辨析。
2.送信。实物投影仪演示反馈。(1)方法说明。你是怎么想的?(2)错误纠正。分层校对:做完的先互相批改,然后集体先校对丁当组题,再校对一休组题。重点讲评一休组题目。六、总结今天你有哪些收获?(1)退位减法要注意什么?不要忘记退位。(2)退位减法的方法。为学生提供学习材料,让学生通过活动联系生活实际学习新知,让学生感受到数学源于生活,用于生活;采用分层教学,整个学习过程都是学生在小组中合作研究、探索中完成的;然后通过多种形式的练习加以巩固;注重学习过程的开放;通过小组合作,培养学生善于发表自己的观点,会倾听同学的意见的能力。同时也培养学生学会提出问题、解决问题的能力。
一、教学内容:两位数减一位数和整十数(不退位)(课本第67页)。二、教学目标:1、知识与技能:让学生经历探索两位数减一位数和整十数(不退位)的计算方法的过程,掌握计算方法,能正确地口算。2、过程与方法:让学生经历自主探索、动手操作、合作交流等方式获得新知的过程,积累数学活动的经验,体会数学知识与日常生活的密切联系,增强应用意识。3、情感态度与价值观:进一步培养学生学习数学的热情,以及积极思考、动手实践并与同学合作学习的态度。三、教学重点:掌握两位数减一位数和整十数(不退位)的口算方法。四、教学难点:理解算理,把握两位数减一位数与两位数减整十位数在计算过程中的相同点与不同点。五、教具准备:课件、题卡、等。六、教学过程:(一)、创设情境,提出问题。
[设计意图:巩固减法的意义,培养学生初步的思维能力。](2)组织学生自己先算一算,教师巡视,捕捉学生学习信息,纠正不良学习习惯。[设计意图:通过巡视,及时捕捉学生的学习信息,发现问题及时解决;把培养学生良好的计算习惯、审题习惯及检查习惯落到实处。](3)组织学生全班交流计算方法。组织学生在全班交流解决计算“32-2=”的方法,引导学生理解“32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”。如果学生用其他的方法来计算,只要正确,也要肯定。[设计意图:同前面一样,巩固数的组成,训练每一个学生“述说整十数加一位数相应减法的计算过程”,突破难点。]3.加减法对比组织学生比较“30+2=32”和“32-2=30”,并说一说有什么发现,使学生认识到“3个十和2个一组成32,所以30加2等于32;反过来,32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”[设计意图:强化加减法意义的联系,培养学生初步的思维能力。]
教学目标1、通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.2、培养学生仔细、认真的学习习惯.3、培养学生观察、演绎推理的能力.教学重点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学难点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学过程设计一、复习准备(演示课件:整数加法运算定律推广到分数加法)下载1.教师:整数加法的运算定律有哪几个?用字母怎样表示?板书:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式应用了什么运算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.二、学习新课(继续演示课件:整数加法运算定律推广到分数加法)下载1.出示:下面每组算式的左右两边有什么关系?
一、教学目标1、让学生懂得使用文明用语是学生应有的美德。2、让学生知道常用的文明用语,并学会运用。3、培养学生使用文明用语的良好习惯。
学习内容:跳短绳学习步骤:一、 自主游戏,活跃情绪教师活动:1、组织学生集队、队列2、提出要求,观察学生分组游戏。学生活动:1、看老师手势,听老师口令快速集队,并从集队中体验“快、静、齐”的集队要求。 2、听口令进行行进练习,比一比小排头带得好还是大排头带得好。 3、两人一组剪刀、石头、布游戏,输的小朋友要带领赢的小朋友做一个动作。 4、学生自己进行柔韧练习(自叫节拍,自想动作)组 织:五路纵队、自由分散 * * * * * * *
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
1、交流与发现为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?方法1:调查学校田径队的30名同学;方法2:调查每个班的男同学;方法3:从每班抽取1名同学进行调查;方法4:选取每个班级中的一半学生进行调查.通过前面的活动,学生亲身经历了一次数据的调查过程,并通过对所得数据的计算和分析,了解了自己在家干家务活的时间所处的位置和水平,在调查过程中体会到调查方便有效的重要性.接下来,就能很好地解决交流与发现中的问题.师生共同讨论完成交流与发现.
1、镇定第一。落水后应保持镇定,胡乱举手或挣扎反会使身体下沉、呛水而淹溺。2、仰泳露鼻。可采取头向后仰、面部向上的仰泳法,使口鼻露出水面进行呼吸。3、深吸浅呼。吸气要深,呼气要浅。4、减轻自重。及时甩掉鞋子和口袋里的重物,但不要脱掉衣服,因为它会产生一定的浮力,对你有很大帮助。5、观察周围。假如周围有木板,应抓住,借用木板的浮力使自己的身体尽量往上浮。6、缓解“抽筋”。若肌肉痉挛(“抽筋”),用手握住痉挛肢体的远端,做反复屈伸运动。7、保存体力。会游泳者在落水自救的过程中,应注意防止“抽筋”,并保存体力。8、配合施救。如果有人跳水相救,千万不可死死抱住救助者不放,而应尽量放松,配合救助者把你带到岸边。
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
1、问题1的设计基于学生已有的一元一次方程的知识,学生独立思考问题,同学会考虑到题中涉及到等量关系,从中抽象出一元一次方程模型;同学可能想不到用方程的方法解决,可以由组长带领进行讨论探究.2、问题2的设计为了引出二元一次方程,但由于同学的知识有限,可能有个别同学会设两个未知数,列出二元一次方程;如果没有生列二元一次方程,教师可引导学生分析题目中有两个未知量,我们可设两个未知数列方程,再次从中抽象出方程模型.根据方程特点让生给方程起名,提高学生学习兴趣.3、定义的归纳,先请同学们观察所列的方程,找出它们的共同点,并用自己的语言描述,组内交流看法;如果学生概括的不完善,请其他同学补充. 交流完善给出定义,教师规范定义.
活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.
1、方程的定义1)像这种用等号“=”来表示相等关系的式子,叫等式。(老师给出定义。)2)请大家观察左边的这些式子,看看它们有什么共同的特征?(老师提出问题。)3)列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式叫做方程。(学生思考后,老师给出新学内容方程的定义。)4)判断方程的两个关键要素: ①有未知数 ②是等式(老师提问,并给出。)
(一)视频分享导入搜集播放幼儿游泳、戏水视频,重点选取贴近生活、具有代表性的场景。1、互动问答师(问):小朋友们* 你喜欢玩水吗?* 在哪里,和谁,发生了什么趣的故事?* 有没有遇到过危险呢 ……2、回答分享小朋友踊跃发言分享,老师给予肯定和鼓励,并奖励小红花等
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。