2.能力目标:在活动中培养学生从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达、思维能力与探索意识,发挥学生的想像力、创造力,激发学生的审美观点,培养学生创造美的能力。3.情感目标:让学生在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学好数学的欲望。教学重点:认识轴对称图形的基本特征,dj舞曲,会找对称轴。三、教法学法1、在教法上,为了将课堂还给学生,让课堂散发生活活力,营造学生在教学活动中独立自主的学习时间和空间,使他们成为课堂教学过程中的参与者和创造者,本着这样的知道思想,本节课我采用了多种教学方法相结合的方式,如:情境教学法、观察比较法、引探教学法、迁移类推法等。通过教师适时的"引"来激发学生主动的"探",通过教师恰如其分的"放"来指导学生独立自主的"学",使师声双边产生共鸣和谐发展!
由于乘法的含义是本节课的重难点,所以我把乘法概念的建立置入学生喜欢的拼图活动之中,并通过实物图,同数相加的算式与乘法算式对照,让学生完成对乘法的初步认识。这样,使概念教学成为学生丰富多彩的学习活动,既有利于学生体会乘法的意义,又可增强学生学习数学的兴趣。在我们的成长过程中,都能体会到,小时候学东西学得快忘得也快。所以,针对小孩子的认知特点,及时地进行反馈练习就是一种帮助学生掌握新知的好方法。因此,我让他们讲黑板上的加法算式改写乘法算式。通过改写,让学生体会不是所有的加法算式都能改写成乘法算式。这样,乘法概念轻轻松松地就被建立在学生的脑海中,又使他们感受到“数学其实就这么简单”,重难点也迎刃而解。教学效果不言而喻,同时学生的个性也得到张扬。
《8的乘法口诀》是《义务教育课程标准实验教科书数学》二年级上册的内容。乘法口诀是学生学习乘法的开始,它是学生今后学习表内除法和多位数乘、除法的基础。教材的呈现是在学生学了“2——7的乘法口诀”以后,所以教材呈现形式没有给出一个完整的乘法算式和一句完整的口诀,意在让学生主动归纳出8的乘法口诀。体现了学生学习独立性要求的编写意图。熟练口算表内乘法,是每个学生应具备的最基本的计算能力。因此,本课的重点应该是让学生理解8的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。基于对教材的理解,我把教学目标定为:(1)认知目标:通过观察、探索,使学生知道8的乘法口诀的形成过程。(2)能力目标:通过教学活动,培养学生的观察能力、判断能力、合作交流和语言表达能力。(3)情感目标:激发学生的学习兴趣,让学生体验生活中处处有数学,会用数学知识解决生活中的问题。
(第三的环节)观察比较,巧妙记忆(英国的社会学家斯宾塞说:教育中应该尽量鼓励个人发展的过程。应该引导儿童自己进行探讨,自己去推论。给他们讲的应该尽量少些,而引导他们去发现的应该尽量多些)首先让学生独立观察,再把记忆口诀的好方法跟小组的成员说一说。接着让学生把自己的好方法和大家一起分享:有学生说:“我的方法是积的十位比几个9的几少1,个位加十位等于九,所以个位是9减十位上的数。比如:6乘9,积的十位就是5,个位是9减5就是4。”还有学生说:“我的方法跟他的不同,我用的方法是:几个9就跟几十比,有几十减几。比如:4乘9,跟40比,用40减4就是36。分享了同学的好方法我指导学生手指记忆口诀的方法。接着让学生用你喜欢的方法试背口诀。然后我还采用师生对口令,同桌对口令,男女生比赛对口令方式进行练习。
活动四:握手游戏这一环节,我先和一个学生握手,并用甲--乙表示我和刚才那个学生,中间用连线的方式数出我们握了一次手。随后,问题提升:假如有三个小朋友,每两人只握一次手,共握几次手?我先让学生猜想会有几次?然后请三个小朋友上台操作验证,并用数学符号代表三个小朋友,请一个小朋友用连线的方式数。最后提问:同样是3,为什么3个数字可以摆6个两位数,而三个人却只能握三次手?让小朋友通过感悟握手是两个人完成的行为,与位置无关,初步理解简单事物排列与组合的不同。活动五:搭配衣服这一环节,我让学生自主连线搭配,然后请一生上台边连线边介绍,让学生用有序思考的方式解决生活中的实际问题。活动六:买东西这一环节,我让学生在仔细读题的基础上,通过同桌讨论,有序地总结出四种不同的付钱方式,可以从5角考虑起,也可以从1角考虑起。
教材分析连加、连减这部分内容是在100以内加减法的基础上进行教学的,是前面所学计算方法的综合练习。通过这部分内容的学习,可以进一步巩固所学的100以内的加减法,提高计算能力。学生在一年级时已学过连加、连减的运算顺序。因此,本节课的教学重点放在教学连加、连减的计算如何用竖式及竖式的简便写法计算。在复习这一环节中,我先设计了笔算两位数加、减法的习题。目的是让学生进一步巩固两位数加、减法的计算法则。然后通过两道口算题复习连加、连减的运算顺序。在进行例1的教学时,先让学生观察少先队员帮农民伯伯摘西瓜的情景图,收集信息,提出数学问题引导学生列出算式。然后放手让学生们尝试算出结果。教师指出简便写法让学生通过比较得出这种写法的简单所在。
学情分析:本节课的教学内容是长度单位米,。尽管学生有这方面的经验和基础,但是长度单位米的建立还是比较难的,在教学中应根据学生特点,通过实践操作活动建立1米的观念。教学目标:1、使学生认识长度单位米,初步建立1米的长度观念,并学会用米测量物体的长度。知道1米=100厘米。2、培养学生观察能力、动手操作能力、空间想象能力和团结合作意识。教学重点:使学生认识长度单位米,初步建立1米的长度观念。知道1米=100厘米。教学难点:在实际操作过程中用米测量物体的实际长度。教具学具准备:米尺、学生尺、10厘米长的纸条、绳子等教学过程:一、创设情景,引起认知冲突。师:同学们,上节课我们学习了用什么作单位去量物体的长度?(厘米)上节课的内容大家都掌握得不错,谁能用学过的知识帮老师量量黑板的长?
【教学设想】《课程标准》指出:“实践活动是培养学生进行活动探索与合作交流的重要途径。”在这一理念的支持下,我设计了以小组为单位进行测量实践活动。一、将学生个体间的学习关系改变为“组内合作”学习的关系。通过让学生小组合作活动学习,培养学生的合作意识、集体观念,培强了学生对集体的责任感受和荣誉感。二、根据学生的实际情况,我合理选取活动素材,向学生提供了具体有趣、富有一定启发性的活动。全课共有四部分:第一部分,课前律动;课堂开始配以儿童喜欢的音乐,让学生在轻松愉悦中进入课堂。第二部分,复习旧知、引入新课;通过对前面所学知识的复习,加深对长度单位“厘米”和“米”的认识。第三部分,活动体验、寓教于乐;这一部分共五个层次;第一层,选取了比较容易的活动,在木条上测量一米的长度,巩固用尺子测量物体长度的方法;第二层,小组分工合作测量与同学们朝夕相处的课桌的长、宽、高这一实际问题,渗透了合作方法;
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
设计意图:知识的掌握需要由浅到深,由易到难.我所设计的三个例题难度依次上升,根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.特别是第三题特别强调了运用法则的前提:必需要底数相同.为加深学生对法则的理解记忆,形成“学以致用”的思想.同时为了调动学生思考,接下来让学生进入反馈练习阶段,进一步巩固记忆.4、知识反馈,提高反思练习1(1)口答设计意图:根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过让个别同学上黑板演演,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.同时,在活动中引起学生的好奇心和强烈的求知欲,在获得经验和策略的同时,获得良好的情感体验.
4、巩固新知,拓展新知(羊羊竞技场)本环节在学生对性质基本熟悉后安排了四组训练题,为避免学生应用性质的粗糙感,以小羊展开竞技表演为背景,让学生在轻松愉快的氛围中层层递进,不断深入,达到强化性质,拓展性质的目的。提高学生的辨别力;进一步增强学生运用性质解决问题的能力;训练学生的逆向思维能力,增强学生应变能力和解题灵活性.5、提炼小结完善结构(羊羊总结会)“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结。设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。6、课堂检测,发展潜能(大战灰太狼)
3、情感态度与价值观:培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。(三)教学重难点根据以上分析,结合本节课的教学内容和学生的思维特点,我将本节课的教学重点确立为引导学生认识倍数与因数,能在1——100的自然数中,找出10以内某个自然数的所有倍数。而将探索出找一个数的倍数的方法确定为本节课的教学难点。二、说学情五年级的学生观察、分析、概括归纳能力已经逐步形成,他们愿意自己观察、分析、概括整理,找出规律。他们在探索新知识上,主动性比较强,同时他们思维活跃,已具备了一定的探究能力和小组合作意识。并且学生在学习本节课之前,学生学过整数的认识,能熟练运用乘除法运算法则解决相应的乘除法运算,是本节课学习倍数与因数相关内容的基础。
本课内容安排在学习了2—5的乘法口诀后,考虑到以后每次出现的口诀都比较多,而且较难记,所以学习乘加乘减也是为了帮助学生学习后面的乘法口诀。本课的教学内容有两个特点:一是让学生在实际生活中发现问题,为解决实际问题列出乘加、乘减的算式,并感受解决问题的策略和方法是多样的,通过对各种方法的比较能进一步加强对乘法意义的理解;二是第一册学生已经学过了连加、连减,它的计算顺序是从左到右,依次计算。本册的乘加、乘减都是只教学乘法在前,加、减法在后的题型,计算顺序同样是从左至右;但在教学中,不能让学生这样说,而必须是学生明确要先算乘法,教材的设计就正是如此,没把“先算乘法”作为运算顺序机械的灌输给学生,而是在现实的问题情境中联系解题策略,使学生依据问题的情理确定先算乘法,真正明白算理。根据教材特点,制定如下教学目标知识目标:在实际问题的情境中感受乘加、乘减算式的意义,能用不同的方法解决问题,知道乘加乘减算式的运算顺序。
(三)实践活动(运用)接着,我设计了实践活动,让学生走出教室,在校园找到不同型号的自行车有四辆我把学生分成四组,并且分工合作,每组5个人,有3 个人负责采集数据,有两个人负责计算出结果。教师还要在旁边指导测量的方法,让学生学会收集数据。培养学生学会用数学的眼光观察现实生活,从中发现问题,提出问题,解决问题,体会数学的广泛应用与实际价值,获得良好的情感体验。数学模型方法的教学,还要培养学生运用模型解决现实问题的能力。因此,在学生理解模型之后,老师提供各种各样的现实问题,引导学生运用所得的数学模型去解决。在这个过程中,教师的指导非常重要,教师要指导学生把现实问题的元素与数学模型中的元素建立丐联系,还要指导学生如何运用已经建构的数学模型来分析和处理问题。学生经历了这样的学习过程,他们才会感受到数学模型的力量,才会感受到数学学习的乐趣。
(一)创设情境,引入新知1、引出小数新课程标准强调数学与现实生活的联系,要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,使他们体会到数学就在身边,也感受到数学的趣味和作用,增强学生的数学应用意识。一开始我便与学生谈话:汤老师周末带孩子去超市买东西,可是他看不懂商品的价格,你们愿意帮他吗,(愿意)。大家一起帮他读出这些文具的价格是多少钱。激发了学生的兴趣,让学生充满爱心和自信心走进课堂。然后请学生仔细观察这些价格,有什么不同,从而引出小数的概念。2、教学读法我充分相信学生的能力和知识广度。聪明的学生可能一下子就能读出小数,有的学生家长教过或听到过小数怎样读,所以我让学生大胆试一试,然后经过学生小组讨论总结出小数的读法。
一、教材分析:本节知识,是在学生建立了小数的概念,学习了小数性质以及小数点移动引起小数大小变化的基础上进行的,包括了复名数化成小数和复名数化成低级和高级单位单名数。教材重在向学生渗透“数学来源于生活,又服务于生活”的理念,以小数在生活中的实际应用为切入点,从学生的生活经验和知识背景出发创设情境,引导学生进行积极的体验,从而体会到数学的内在价值。二、说教法这节课,在教法和学法上力求体现以下几个方面:1、坚持以“学生为主题,老师为主导,训练为主线”的原则,主要采用启发诱导的教学方法,引导学生亲历知识的观察、发现、应用的过程。引导学生利用迁移法,讨论法,自主探究法对新知识进行主动学习。2、注重创设情境,从学生已有的小数知识出发,紧密结合具体的生活情境和活动情境,激发学生的学习兴趣。
教学反思:1、引导学生体验抽象除法竖式的过程。学生在学习表内乘除法时,利用乘法口诀已经能够在算式上直接写出得数。教材安排了“18个苹果,每盘放6个,可以放几盘”的“分苹果”活动,列举了四种解决这一问题的方法。在此基础上,引导学生按照自己的想法来分这些苹果,进而再由对除法竖式有一定了解的学生介绍竖式计算,并且把竖式中的每一步所表示的含义和分苹果的活动紧密联系起来。2、在探究中理解除法的试商方法。学生通过实际操作、观察比较,培养学生质疑和创新精神,学会学习、积累数学活动经验的有意义的学习过程。3、不足:这节课上得不够生动、活泼。
因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。所以在教学中应注意以下两点: (1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.