提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小班数学教案 6以内的点数

  • 北师大版小学数学六年级下册《圆柱的表面积》说课稿

    北师大版小学数学六年级下册《圆柱的表面积》说课稿

    (四)联系生活巩固练习培养能力这一环节是内化知识,训练思维,培养能力,形成技能的重要环节,因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,让学生把所学的知识运用于解决生活中的实际问题中,使学生感受到数学与生活的紧密联系,数学来源于生活又作用于生活。这一过程我安排了三道大题,都是用课件展示:一是填空题,主要让学生进一步掌握圆柱的特征、圆柱侧面积和表面积的计算方法;二是两个图形题,分别计算圆柱的侧面积和表面积;三是解决问题,有四小道,(一)是计算通风管需要铁皮的面积(教材7页4题),(二)是计算无盖水桶的表面积(教材6页试一试),(三)是计算油桶的表面积(教材7页5题),(四)是计算5根立柱的油漆面积,并计算要用油漆多少千克,需要花多少钱。在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。同时也让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算。

  • 北师大版小学数学五年级下册《有趣的测量》说课稿

    北师大版小学数学五年级下册《有趣的测量》说课稿

    3.设计实验。怎样测量一粒黄豆的体积。这是在第二题的基础上进行的一个设计实验,再次回到“有趣的测量”,让学生不仅会计算,还要会自己想办法测量生活中的很多不规则物体的体积,这也是我们这节课要达到的目的。练习完之后教师再适时将学生带进数学万花筒,感受两千多年前阿基米德的风采,激发了学生对数学的兴趣,增强他们主动探索科学知识的意识。(四)、总结回顾评价反思在这一环节让学生讲一讲收获、谈一谈感受,让学生自己评价自己,使学生体验到成功探索和解决问题的乐趣,树立学好数学的信心,为学生自主探索提供更为广阔的空间六、说板书设计本节课我采用重点内容提纲式板书,简单明了,重点突出。利用不同色彩的区分吸引学生的注意力,突出“转化”这一重要思想。

  • 北师大版小学数学六年级上册《圆的面积》说课稿2篇

    北师大版小学数学六年级上册《圆的面积》说课稿2篇

    2.学法指导通过实例引入,引导学生关注身边的数学;在借助长方形面积公式来推导圆的面积公式的过程中,让学生通过观察、归纳、联想、转化等学习方法,动口、动手,动脑,培养学生学习的主动性和积极性。3.教学手段为了更好地展示数学的魅力,我结合多媒体辅助手段,充分地调动学生的感官,增加学习的形象感与趣味性,并且给学生留有足够的思考和交流的时间和空间,使学生成为课堂的主人。三、说教学过程1.创设问题情景,引入课题。出示课件让学生观察并说说从图中能发现什么数学信息,使学生在具体情境中了解圆面积的含义,体会到研究圆面积的必要性。2.探究思考,解决问题:估计圆的面积有多大。通过探究和思考使学生进一步体会到面积度量的含义,感受“化曲为直”的思想,同时培养学生的估计意识。

  • 北师大版小学数学五年级下册《长方体的认识》说课稿

    北师大版小学数学五年级下册《长方体的认识》说课稿

    五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。

  • 北师大版小学数学六年级下册《比例的应用》说课稿

    北师大版小学数学六年级下册《比例的应用》说课稿

    一、说教材教科书创设蕴含着按一定比例交换的数学情景。引导学生用多种方法解决问题,列出含有未知数的比例。并自主探索解比例的方法。本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的。主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。二、说教学目标及教学重难点1经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。2在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积,求比例中的未知项,”会正确解比例。3在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。教学重点:使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。

  • 北师大版小学数学六年级下册《神奇的莫比乌斯圈》说课稿

    北师大版小学数学六年级下册《神奇的莫比乌斯圈》说课稿

    一、说教材【设计理念及意图】新一轮课程改革的一个重要特征是以学生的学习方式作为一个突破口。在灵活多样的学习方式中,新课程提倡和凸显“自主、合作、探究”学习,使学生在玩中学、做中学、思中学、合作中学,亲身经历将实际问题抽象为数学模型,并进行解释与应用的过程。使学生更好地理解数学、运用数学,获得学习中的乐趣与全面和谐的发展,从而使“知识与技能、过程与方法、情感态度与价值观”的三维课程目标得以实现。一、说教材【设计理念及意图】新一轮课程改革的一个重要特征是以学生的学习方式作为一个突破口。在灵活多样的学习方式中,新课程提倡和凸显“自主、合作、探究”学习,使学生在玩中学、做中学、思中学、合作中学,亲身经历将实际问题抽象为数学模型,并进行解释与应用的过程。使学生更好地理解数学、运用数学,获得学习中的乐趣与全面和谐的发展,从而使“知识与技能、过程与方法、情感态度与价值观”的三维课程目标得以实现。

  • 北师大版小学数学六年级下册《圆柱的体积》说课稿

    北师大版小学数学六年级下册《圆柱的体积》说课稿

    这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。(五)总结全课,深化教学目标结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。

  • 北师大版小学数学六年级下册《圆锥的体积》说课稿

    北师大版小学数学六年级下册《圆锥的体积》说课稿

    1.教学内容:本节教材是北师大版六年级下册第一单元《圆柱和圆锥》,《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,学生尝试题、练习、试一试、练一练第一题。2.教材分析本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。3.教学重点:能正确运用圆锥体积计算公式求圆锥的体积。教学难点:理解圆锥体积公式的推导过程。4.教学目标:(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  • 北师大版小学数学六年级上册《观察的范围》说课稿

    北师大版小学数学六年级上册《观察的范围》说课稿

    3.制定教学目标根据教材内容、教材的编写意图和学生的认知规律,制定本节课的教学目标为:知识与技能:给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。过程与方法:从熟悉的、有趣的生活背景中让学生感受观察范围的变化,通过观察、操作、想象等活动,发展学生的空间观念。情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。4.教材的重难点根据教材内容的地位、作用和学生已有知识经验的实际情况,制定本节课的重难点是:经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念,能解决日常生活中的一些现象。

  • 北师大版小学数学六年级上册《生活中的比》说课稿

    北师大版小学数学六年级上册《生活中的比》说课稿

    (一)教材分析本节课是在学生已经学过除法和分数的意义以及分数与除法的关系的基础上进行教学的。由于学生在理解比的意义上比较困难,教材并没有采取直接给出“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,提供了多种情境,引发学生的讨论和思考,让学生体会引入比的必要性,感受比在生活中的广泛存在,也为“比的应用”“比例”等后续学习做好铺垫。(二)教学目标在认真分析教材的基础上,结合学生实际,我从知识、能力、情感等方面拟定了本节课的教学目标:知识目标:经历从具体情境中抽象出比的过程,理解比的意义,能正确读写比,会求比值。能力目标:培养学生自主学习、独立思考,能利用比的知识解决一些生活中的数学问题。情感目标:引导学生广泛联系生活实际,充分感受数学知识的美与乐趣,激发学生的求知欲望。

  • 北师大版小学数学六年级上册《统计图的选择》说课稿

    北师大版小学数学六年级上册《统计图的选择》说课稿

    一、教材分析1.教材的地位和作用本节教材是北师大版六年级数学上册第5章《数据的收集与整理》第3节的内容,这一章是《全日制义务教育数学课程标准(实验稿)》第三学段“统计与概率”部分的第一章,也是基础章节。它让学生经历数据的收集、整理、描述的过程,体会适当选择统计图表对描述实际问题的作用,为以后进一步学习统计的有关知识打下基础2.学情分析学生在此之前已经在小学阶段学习过有关统计图表的知识,对三种统计图也有了一定的认识和感知,会画三种统计图,但是对于究竟如何选取适当的统计图去说明一些具体实际问题还存在一定困难,所以本节内容主要是让学生对三种统计图各自的特点和优势有一定的认识。3.教材重难点根据对教材的研读和学生学情的分析,结合新课标对本节的要求,特将本节的重难点确定如下:

  • 北师大版初中数学九年级上册图形的放大与缩小说课稿

    北师大版初中数学九年级上册图形的放大与缩小说课稿

    说教学难点:图形的放大与缩小的原理是“大小改变,形状不变“。针对小学生的年龄和认知特点,教材中“图形的放大与缩小”从对应边的比相等来进行安排,而对应角的不变也是形状不变必备的条件,是学生体会图形的相似所必需的。学生在学习的过程中很有可能会质疑到这一问题。(为什么直角三角形只需要同时把两条直角边放大与缩小?)所以我把“学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似。(对应边的比相等,对应角不变)”做为本节课的难点。说教法、学法:通过直观演示,情景激趣,结合生活让学生形成感性认识;引导学生经过观察、猜想、分析、操作、质疑、小组交流、合作学习、验证等过程形成理性认识。教学过程:(略)

  • 高教版中职数学基础模块下册:8.2《直线的方程》教学设计

    高教版中职数学基础模块下册:8.2《直线的方程》教学设计

    课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔

  • 高教版中职数学基础模块下册:9.1《平面的基本性质》教学设计

    高教版中职数学基础模块下册:9.1《平面的基本性质》教学设计

    课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 人教版高中数学选修3离散型随机变量的均值教学设计

    人教版高中数学选修3离散型随机变量的均值教学设计

    对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

上一页123...656667686970717273747576下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。