补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
[活动目标]1.引导幼儿发现学习,激发幼儿的好奇心和求知欲望,培养幼儿的探索精神。 2.通过各种探索影子的活动,使幼儿发现光和影子的关系。 [活动准备] 准备电灯、手电筒、幻灯机、投影仪等。活动在晴天的户外场地上进行。 [活动过程]1、在户外找影子:如树影、房影、人影等。让幼儿在阳光下和阴暗处分别跑一跑,看看自己的影子,对比了解阳光下有影子,阴暗处则没影子。说说怎样才能产生影子。2、想一想,什么时候什么地方发现过影子?(在灯光、火光、月光、手电光照射下有影子);请幼儿分别在灯光、火光、手电光照射下观察影子有什么不同,为什么?3、画影子:早晨中午、下午站在同一地点,两人一组互相帮忙,把地上的影子画下来。比一比,自己与他人的影子是否相同?在三个不同时期,自己的三个影子有什么变化?想一想影子为什么会变?
2、与温室养花工人取得联系。 过程 ①观察大树:让幼儿仔细观察冬天的树是什么样子?想一想,它们冻死了吗?找一找树上还留下了什么?引导幼儿发现芽苞、果实、种子等。 让幼儿剥开芽苞看一看,它里面有什么?猜一猜,明年春天会变成什么? ②观察小草:让幼儿在草地上观察,看看冬天的小草怎么样了?想一想,小草冻死了吗?挖出小草的根看看是什么颜色的?根上长着什么? ③将树枝、草根带回活动室,将它们浸泡在水中。让幼儿每天观察它们的变化。引导幼儿发现室内外不同温度对植物生长的影响。
活动准备:1、地球仪、手电筒各一个。2、白色和黑色卡纸制成的“白天先生”和“黑夜小姐”人手一个。3、 32K大小的黑卡纸每人一张、笔。 活动环节: 一、念诗歌《我喜欢长长的夜》。(1)教师引导语:前几天诸老师和我们一起学习了一首好听的诗歌,叫什么呢?你们觉得这首诗歌听起来怎么样?(2)幼儿用温馨好听的声音来把诗歌念一遍。
活动的目标是教育活动的起点和归宿,对活动起着导向作用。根据我班幼儿的年龄特点和实际情况以及布卢姆的《教育目标分类学》为依据,确立了认知、能力方面的目标,其中既有独立表达的成分,又有相互融合的一面,目标为:1、通过观察,幼儿能用较清楚的语句讲述黄豆发芽所需的外部条件以及在不同生长环境中生长的速度有何不同。2、通过一系列的观察种植活动,培养幼儿仔细观察并记录的能力。根据目标,我把活动的重点定于观察黄豆在不同生长环境中生长速度有何不同,讨论为什么会有这些不同?活动的难点是如何用较清晰的语句来说明自己的观察结果。同时在本次活动中重点是发展了幼儿的语言智能和自然观察智能。活动目标:1、通过观察,幼儿能用较清楚的语句讲述黄豆发芽所需的外部条件以及在不同生长环境中生长的速度有何不同。2、通过一系列的观察种植活动,培养幼儿仔细观察并记录的能力。活动准备:1、知识准备:幼儿已经认识了空气,知道空气无处不在,月球上没有空气,万物就不能生长。2、实验准备:幼儿已经初步观察过在一般情况下黄豆的发芽情况;准备好在不同环境(水、沙、土)中已经发芽的黄豆以供幼儿观察。活动流程及环节:提出问题——进一步延伸问题——观察讨论——引出新问题、新实验一、提出问题:1、师提出问题:小朋友,前一段时间我们进行了黄豆发芽的实验,谁来告诉我,怎样才能使黄豆发芽?你看到的黄豆是怎样发芽的?先长什么?再长什么?颜色有些什么变化?
[活动准备] 1、酒精灯、烧杯、玻璃片、三角架、火柴。2、雨的形成课件 [活动过程] 一、播放雨的形成课件,引导幼儿听雨声,看雨景。 小朋友们,听听这奇妙的声音,问:这是什么声音?(幼儿:雨声) 看电脑动画,问:这是什么景象?(幼儿:下雨) 雨从哪里来? 幼儿:从天上。 师:天上为什么会下雨? 幼儿:因为天上有云彩幼儿:因为有乌云
基本部分: 1、请幼儿用手摸自己的喉咙,然后分别大声和小声说话看看有什么感觉吗?(多找一些幼儿说出他们的感受)师幼总结:大声说话,喉咙震动的就大,小声说话,喉咙震动的就小。 2、请幼儿用勺子敲敲瓷碗里面的水,分别轻轻敲,用力敲,看看用什么发现吗?幼儿回答完后师幼一起总结:轻轻敲碗,发出的声音小,碗里的水动的小;用力敲碗,发出的声音大,碗里的水动的也大。 师总结:哦,原来振动产生了声音,我们便听到了声音。 3、做律动“科学泡泡”调动幼儿情绪。 教师放电话铃声,然后接电话。(两个纸杯做的电话)教师装出很神秘的感觉,提高幼儿的兴趣。 a教师将范例电话发给幼儿让他们观察它的做法。然后把做电话的材料发给幼儿让他们和自己的好朋友一起合作制作一个电话。
【活动目标】1、发展幼儿的观察、记录能力,体验探索的乐趣。2、引导幼儿在好奇心和求知欲的驱动下探索操作、初步理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌有关系,并能用自己的语言进行表达。【活动准备】 杯子、面糖、砂糖、冰糖、小块糖、果珍、一次性纸杯、碟子、热水、凉水、记录表、笔若干。【活动重难点】 在实验中探索、理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌等因素有关系。【活动流程】 (一)猜测和假设: 教师出示各种不同的物品(石子、棉花、各种糖、植物种子等等)。幼儿猜测:哪些物品放进水里能化,哪些物品放进水里不化? 幼儿自由交流讨论后进行分类:能溶化的一组,不能溶化的一组。 提出问题:如果把这些能溶化的物品放到水里,哪些化得快、哪些化得慢?怎样做能让它化得快一些呢?导入课题。
【活动目标】1、让幼儿在探索中了解火箭升天的基本原理,感受科学的神奇。2、引导幼儿在简单的操作中,初步了解物体的反作用力,体会操作的乐趣。3、培养幼儿的动手操作能力,激发幼儿的科学兴趣和探究欲望。【活动准备】神七升天实录、气球若干、放烟花图片、穿天猴(鞭炮的一种)两个。【活动过程】 一、观看升天扣人心弦1、师生一起观看“神州七号”升天的动人场面,认真观察神七的外形特点和发射方法。2、自由讨论问题“火箭为什么能上天?” (分析:导入开门见山,通过观看神七升天,让幼儿又自主性的提出了这个问题,更加激发了幼儿主动探究的兴趣。)二、探索原理动手操作1、在生活中找现象 教师展示放烟花图片,让幼儿观察,提出问题: 过新年时,小朋友知道烟花是怎样飞上天的吗? 教师户外燃放穿天猴,请幼儿观察穿天猴升天现象。 一起说一说:“此现象和火箭升天有什么相似的地方吗?”2、在操作中找答案 给幼儿每人一个气球,引导幼儿吹上气,把口捏紧朝下,然后快速松手,气球会发生什么现象?(气球会一边向后喷气,一边向天空飞去。) 师:“气球吹的大和气球吹的小,快速松手后,它们飞的一样高吗?”“当气球喷完气后会怎样呢?” (分析:选择幼儿生活感兴趣、常见的类似火箭升天的现象让幼儿观察,拉进了幼儿与科学的距离,让幼儿觉得科学并不遥远,非常亲切。操作气球飞天,简单易行,让幼儿看小现象,懂大道理。)
活动目标:1、巩固对正方形的认识,了解平面图形和立体的区别。2、初步感知正方体,知道其名称和最显著地特征。活动准备:圣诞老人、大、小包装盒(人手一个)、正方形卡片、剪刀、彩笔(人手一个)、各种装饰材料(皱纹纸、亮光纸、卡纸等)。活动重难点: 重点:初步感知正方体,知道其名称和最显著地特征。难点:了解平面图形和立体的区别。活动过程:一、导入部分:出示圣诞老人,引起幼儿兴趣。师:圣诞节快到了,圣诞老人给小朋友们送来了礼物,我们一起来看看是什么吧?(出示包装盒)好漂亮的礼物盒,里面会是什么呢?打开看看圣诞老人为什么要送我们这些礼物呢?它想让小朋友探索一下这些包装盒有什么秘密?