解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
(一)教材内容分析大千世界中的生灵万物,都有颜色。颜色既是物质固有的特征,又富有浓郁的情感含义。以色彩及其相关的事物为对象,引发幼儿与它们之间发生互动,这对幼儿在认知建构方面都会产生积极的作用。儿童的世界更是五彩斑斓,就像红、黄、蓝、绿这些颜色一样,在秋景迷人的季节里,孩子们运用自己的感官发现秋天是多彩多姿的。他们感知美丽、丰富的色彩藏在哪里。本教材的重点、难点是知道秋天是美丽多彩的。(二)幼儿情况分析在人们的印象中,秋天应该是金黄色的,因为稻子熟了,树叶黄了,一片丰收的景象。正是由于丰收了,激发幼儿强烈的好奇心与求知欲。我们便可利用现实生活中真实事物的颜色,让幼儿亲身体验、感受到秋天的多样性,从而知道秋天的颜色多种多样。
《纲要》在语言领域中提出:“发展幼儿语言的关键是创设一个能使他们想说、敢说、喜欢说、有机会说并能得到积极应答的环境”以及要“鼓励幼儿大胆、清楚地表达自己的想法和感受,发展幼儿语言表达能力和思维能力。”根据这一目标和要求,结合大班幼儿的年龄特点和语言发展水平,我选择了这节语言活动。根据以上对教材的分析我制定了以下三个目标:1.感受散文诗的优美意境。2.理解散文诗的内容,能有感情的朗诵。3.鼓励幼儿大胆创编与花色相应的梦,激发幼儿的想象力与创编能力。活动重点:理解散文诗的内容,感受散文诗的优美意境。活动难点:鼓励幼儿大胆创编与花色相应的梦,激发幼儿的想象力和创编能力。
大班上学期的幼儿年龄在5岁左右,他们想象力丰富,思维活跃。本班幼儿在以往类似的语言活动中,大多能在老师的引导下理解作品的主要内容,并乐意用自己喜欢的方式创造性的表现文学作品。但是在口语表达方面还是有点欠缺,在集体中发言时态度还是有点拘谨。语言表达不够流畅,有时表现为用词不太恰当。因此本次活动我注意引导幼儿积累一些丰富的词汇,在活动中努力为每个幼儿提供在集体面前大胆表现自己的机会。真正做到让孩子有话可说,有词可用。在口语表达方面有新的进步和突破。
一、教材分析 《真正的哲学都是自己时代精神上的精华》是人教版高中政治必修四第3章第1框的教学内容,主要学习哲学与时代的关系。二、教学目标1.知识目标:识记哲学是时代的精神上的精华;理解哲学与时代的关系。2.能力目标:培养学生运用哲学理论观察、分析、处理社会问题的能力,增强学生的时代感。3.情感、态度和价值观目标:培养学生与时俱进的思想品质,让学生关注时代、关注现实、关注生活,逐步树立科学的世界观、人生观、价值观 。三、教学重点难点哲学与时代的关系。四、学情分析本框题的内容比较抽象,不易理解,所以讲解时需要详细。教师指导学生借助历史知识进行理解。五、教学方法1.教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。2.学案导学:见后面的学案。3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
在实际工作中,一是积极开展法治宣传。区法学会积极以“法律服务进基层”为载体,组织会员积极投身法律“六进”活动。先后与区综治办、区610办和区文体旅游局等单位利用群众性广场文化活动,开展多次集中法制宣传与服务,共计展出各类法律宣传展板×余块儿、标语条幅×余条,服务群众两万余人次。二是积极参加省、市法学会组织的课题建议活动。对于上级法学会的课题招标,区法学会高度重视,在河南省法学会征集20**年度研究课题建议时,积极报送了《公安保密:要“喊”在口上“落”在脚下》的议题建议;在市法学会征集法治宣讲主题建议时,积极报送了《有关民间借贷与非法吸收公众存款案件的合理界定,以及民间借贷纠纷案件的预防和化解》的主题建议。同时,针对当前社会矛盾纠纷预防和化解工作,加强了对行业调解、司法调解的研究和探索。三是积极参与社会治理。区法学会积极组织会员参与多层次、多形式的平安创建和法治创建活动
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
《卖火柴的小女孩》统编教材三年级上册第三单元的第一篇精读课文,是丹麦作家安徒生的著名童话。讲述了在下着大雪的大年夜,一个为了生活被迫卖火柴的小女孩冻死街头的故事。表达了作者对当时黑暗社会的痛恨,对贫苦人民的深切同情。文章虚实交替,美丽的幻象和残酷的现实更迭出现,是这篇童话的特点。本文原是人教版六年级下册第四单元“学习外国名篇名著”中的一篇文章,旨在引导学生感知外国作品的特点,理解含义深刻的句子,感受卖火柴的小女孩悲惨的命运,体会作者表达的思想感情。统编教材将文章编排在三年级,“感受童话丰富的想象”为本单元的语文要素,旨在引导学生发现幻象与愿望之间的关系,感受童话丰富的想象,帮助学生建立对童话体裁的初步认识。
尊敬的老师,亲爱的同学:早上好!在和煦的春风里,万里焕发了生命力。我们美丽的校园里也在悄悄地发生着变化。同学们在春天里变得活跃起来,课间爱在操场上奔跑和追逐,是的,生命在于运动。瞧,我们的老师已在操场南面的墙上为你们绘制了体育健儿运动的画面;不知道你们观察过没有,在植树节里,有许多棵树悄悄地在我们的校园里安了家,正迎着阳光雨露想和同学们一起茁壮成长;路旁的花坛里,小草欣欣然张开双眼,一切显得那么美好。可有的同学在玩耍时常爱用脚去踩无辜的小草,用手去摇可怜的小树。“小朋友,我们需要休息。等到夏天,我们会给你们浓浓的绿阴。”同学们,你们听了这样的声音,你还忍心打扰他们吗?
活动目标1、初步理解年、月、日的概念,感知年、月、日之间的关系;了解一年有12个月,一个月有30(31)天,一年共有365天。2、通过游戏,知道日历等是记录或查看日期的工具;学习查看它们的方法。3、培养幼儿观察和想象能力,发展幼儿的交往能力。 活动准备1、字卡(年、月、日)各一份、自制外型似房子关的1月—12月的月历(大月、小月、2月房子大小有区分);年历、台历和挂历各一份;2、小字卡(年、月、日)和数字卡片(12、28、30、31、365)铅笔、人手一份;3、2007年年历人手一张;
五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。
三、说学法有效的数学学习活动不是单纯地依赖模仿与记忆,而是一个有目的的、主动建构知识的过程。为此,我十分重视学生学习方法的指导,在本节课中,我指导学生学习的方法为:观察发现法、动手操作法、自主探究法、合作交流法,让他们在说一说、摆一摆、填一填、做一做、想一想等一系列活动中探索长方体体积的计算方法。我力求以"长方体、正方体体积"这一数学知识为载体,通过学生主动参与、自主探究、发现结论的过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上。四、说教学流程教学时.我安排了情景引入.揭示课题,自主探究.推导公式,利用关系.类推公式,巩固练习.运用公式,全课总结.交流评价五个环节.(一)激情引趣.揭示课题.首先,通过比较生活中一些物体的大小,复习体积概念。
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
二、乘船安全 1、讲解乘船的意外伤害事故,引起学生的重视。 2、了解乘船的安全知识。 乘船要做到二要三不要: (1)二要 一要乘坐证件齐全的船只。 二要乘船时听从指挥。 (2)三不要 不要乘坐超载的船只;不要在船上嬉戏打闹;不要冒险乘船。
一、教材分析:《安全记心上》是人教版道德与法治三年级上册第三单元第二课的内容。本单元围绕“安全护我成长”的主题,紧接第一课生命的重要意义内容,本课旨在帮助学生认识到日常生活中的危险并培养规避风险的能力。其次就是本节课教学目标教学目标:【知识与能力目标】了解生活中的危险行为,并形成主动规避安全风险的意识和能力。【过程与方法目标】通过课本知识及相关案例帮助学生树立更完善的安全意识。【情感态度价值观目标】认识到生活中的危险是可以积极行动去避免的,培养安全意识和珍爱生命的观念。然后就是教学中的重难点分析教学重难点:1.教学重点:通过本课的学习认识日程生活中的危险行为并主动避免。2.教学难点:树立安全第一的意识,培养应对危机情况的能力。在对教材整体分析完之后,我们需要老师学生在课前做哪些准备;
【活动主题】迎难而上 【活动目的】1.使学生了解迎难而上,培养坚强意志。2.在学习和实践中充分发挥自己的主观能动作用,百折不挠克服学习上的各种困难,以顽强的意志提升自我,实现既定目标,达到成功的彼岸。 【活动准备】1.准备一个不管是顺境还是逆境,都不放弃自己的追求,生命不息、奋斗不止、坚韧不拨的故事。2.准备不同意志力的学生对学习影响的情境。【活动过程】一、班主任引题每个人的一生不都是一帆风顺的,都会有这样或那样的烦恼,而这些烦心事就是我们通常所说的困难。今天我们就围绕“困难”这个话题开一次班会。二、正视困难1.面对困难的两种态度甲:人的一生难免会遇到这样或那样的烦恼和挫折,“万事如意”“心想事成”只不过是人们的美好祝愿而已。
教学说明:问题(1)是借助“边边边”条件判定三角形全等的知识来解释的。因为三边长度确定后三角形的形状就被固定了,因此三角形具有稳定性。问题(2)可用多媒体展示三角形稳定性在实际生活中应用的例子。要解决问题(3),只需要在四边形中构建出三角形结构,这样就可以帮助其稳定。设计意图:通过学生动手操作,探究三角形稳定性及生活中的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。 (五)总结反思,情意发展问题:通过这节课的学习你有什么收获?多媒体演示:(1)知识方面:①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。②三角形具有稳定性。(2)技能方面:说明三角形全等时要注意公共边的应用。