5.请你根据前面的探究,总结本文的论证思路。明确:作者首先通过论述作者、读者以及文字之间的联系来明确读者欣赏文艺作品的本质,即“接触作者的所见所感”,然后以赏析王维诗句为例,从正反两个角度论述了驱遣想象力的重要作用。目标导学三:赏析语言,领悟内涵文中有许多句子,都有十分深刻的文艺观,它们或有十分深刻的内蕴,或有写作值得借鉴的实用价值,请阅读下面几句,谈谈你对它们的理解。(1)文艺的创作决不是随便取许多文字来集合在一起。明确:任何一篇文艺作品,都是文字集合起来的,但这是一种有着内在逻辑顺序的结合,具有文本表现中的一般技法,既表现了内容也传递着作者的思想感情。因此,这样的文章绝不可能随意拼凑,须由作者有意识、有目的、有逻辑地创造,而在完成时又符合自然的特点。(2)作者着手创作,必然对于人生先有所见,先有所感。
2.作者要说的是山水画的意境,为什么要在第一部分大篇幅分析诗歌的意境。明确:按照作者的观点,“孤帆远影碧空尽,唯见长江天际流”两句,完全描写自然的景色,然而就在这两句里,使人深深体会到诗人与朋友的深厚友情。描写自然的景色与绘出景色无异,且作者提到“意境就是景与情的结合”,可见诗歌中的意境与山水画的意境是相通的,并无二致。因此,作者在这里以已经学习过的诗歌意境为例,也就能更好地诠释山水画的意境。3.“意境的产生,有赖于思想感情,而思想感情的产生,又与对客观事物认识的深度有关。”作者是如何论述此观点的?你认为这个观点正确吗,请结合你的个人经历做简要说明。明确:作者以齐白石画虾为例来论证了他的观点。这个观点正确,如我们知道松树的耐寒可以象征它的坚忍,而当我们在雪地里认真观察,会发现只有松树傲然长青,松针贯穿积雪依然向上,此刻,我们会真正感受到这种坚忍的品质是那样真实。
7、几乎不做家务,力所能及的事情都要父母代办。8、有时候,你的父母气极了,会骂你“给我滚,滚得远远的!”之类的话。以上问题说明,你表现得越小孩子气,你的父母就越把你“拴牢”,这种关系就越难平等。就像我给予你们充分的信任和自由,但是如果你们的表现让我觉得达不到我的期望和要求时,我也会成为专制的“暴君”、“严师”,就会影响到我们之间原本平等融洽的关系。二、朗读诗 小时候,你是父母的尾巴,你需要父母,需要保护;如今你长大成了少年,你成了父母手里的风筝,你渴望独立,渴望自由,却不能挣脱父母的“拉线”。可你是否想过,如果你真的成了断线的风筝,你将飞向何方?其实,你是父母特别的客人,两代人即使不能相互理解,也可以相互接纳。你不必像风筝一样抗争,你可以和父母友善地“分离”,而不被父母过分的保护“拴牢”。走向成熟就是独立得更彻底,而又联系得更紧密。
学生谈感受。过渡:讲得很好。中国有句古语:“百善孝为先”。意思是说,孝敬父母是各种美德中占第一位的。一个人如果都不知道孝敬父母,就很难想象他会热爱祖国和人民。古人说:“老吾老,以及人之老;幼吾幼,以及人之幼”。我们不仅要孝敬自己的父母,还应该尊敬别的老人,爱护年幼的孩子,在全社会造成尊老爱幼的淳厚民风,这是我们新时代学生的责任。(二)做一个好学生,让老师幸福;做一个好伙伴,让同学幸福;做一个好少年,让社会幸福;提问:怎样才是一个好学生?怎样才是一个好伙伴? 怎样才是一个好少年?学生讨论——发言。老师小结:周恩来12岁立志“为中华崛起而读书”,这是多么远大的理想和抱负啊!最后他实现了理想。残疾少年周炜顽强勤奋,不仅生活能自理,还是一名品学兼优的学生。我们身边有很多很多同学,他们性格开朗,乐于助人,把欢乐带给周围的人。他们让老师觉得幸福。
一、引入 主持人:感谢父母,他们给予你生命,抚养你成人;感谢老师,他们教给你知识,引领你做“大写的人”;感谢朋友,他们让你感受到世界的温暖;感谢对手,他们令你不断进取、努力;感谢太阳,它让你获得温暖;感谢江河,它让你拥有清水;感谢大地,它让你有生存空间。感恩,是一种心态,一种品质,一种艺术。感恩是礼貌。有人帮助了我们,我们随口说声“谢谢”,可能会给对方心里带来一股暖流。有人为我们付出了许多,我们感谢他,他可能会更加多的帮我们。怀着感恩的心,是有礼貌,是知恩图报。所以,感恩,是一种有礼貌的品质。感恩是画笔。学会感恩,生活将变得无比精彩。感恩描绘着生活,将生活中大块的写意,挥洒得酣畅淋漓;将生活中清淡的山水,点缀得清秀飘逸;将生活中细致的工笔,描绘得细腻精美。所以,感恩,是一种多样的艺术。下面我宣布“让我们都有一颗感恩的心”主题班会现在开始!
学生欣赏。教师补充讲解。谈谈你有什么感受。同学们,你们勤劳的双手除了做自己的事以外,还为别人做过事吗?师:同学们,你们的小手可真能干 ,会做这么多事情,我们来夸夸自己吧。(学生(齐):嘿嘿,我很棒!)师:我们不但自己的事情自己做,而且还能够别人的事情帮着做。我们的双手会干这么多事情,我真为你们感到高兴。那你们想一想,要是遇到我们不会干的事情,我们又该怎么做呢?学生交流。师:我们不会干的事情一定要学着去做。5、欣赏歌曲《我有一双勤劳的手》6、倡议正如歌曲里的“我有一双勤劳的手,样样事情都会做”下面,周老师提出7条倡议。师:全体起立,请我们班的全体同学从今天开始都能做到:(出示)跟老师一起读。
1. 会写13个生字。正确读写“预告、烟草、烟雾、昏沉、错综”等词语。2.能联系上下文理解难懂的词语。有感情地朗读课文。?3.能结合课文内容,说说“好的故事”的“美丽,幽雅,有趣”体现在哪里。4.能借助“阅读链接”及相关资料,理解课文最后两个自然段。? ???三、说教学重难点1.能联系上下文理解难懂的词语;有感情地朗读课文,能结合课文内容,说说“好的故事”的“美丽,幽雅,有趣”体现在哪里。2.能借助“阅读链接”及相关资料,理解课文最后两个自然段。四、说教法、学法? 语文教学要遵循“以教师为指导,以学生为主体,在读中有所感悟,在读中培养语感,在读中受到情感熏陶”的教学原则。针对本课的教学目标和学生的特点,我选择以下教学方法:? 1.朗读品悟法。“读”是理解课文,体会作者思想感情的有效手段,“读”也是语文实践的主要途径之一。教师要善于引导学生走进文本,读进去,想开去,调动学生已有的生活体验来理解和体会语言。本课教学我以读为本,采用多种方式朗读,读悟交融,让学生在朗读中积极思考、以读促思,以读促情,从而体会“好的故事”的“美丽,幽雅,有趣”。
知识和技能 1.了解人类活动对生物圈影响的几个方面的实例。 2.掌握环境污染的产生及危害。 3.举例说明人类对生物圈中资源的合理利用。 过程与方法 1.能初步学会收集资料,养成良好的学习习惯,能够运用所学知识、技能分析和解决一些身边的生物学问题的能力。 2.培养学生初步具有近一步获取课本以外的生物学信息的能力。 情感、态度与价值观 1.让学生认识到环境保护的重要性,能够以科学的态度去认识生命世界,认同人类活动对生物圈的影响,形成环境保护意识,并使这种意识转变成真正的行动,培养学生保护环境的意识,增强爱国主义思想1.认同人类活动对生物圈的影响,形成环境保护意识 2.做到从实际行动出发保护环境1.采取让学生收集资料,整理资料,解疑
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。