师:很好!我们知道,元明清时期,我国封建社会进入衰落时期,封建专制不断加强,对文人的思想控制也在不断加强,士大夫文人只有通过画来表达自己的想法和内心世界,所以这时候的画强调借物抒情。大家可以再看到这幅清朝郑板桥《墨竹图》,竹子非常清新俊逸,抒发了一个清高的文人情怀。大家可以仔细品味,郑板桥的竹子有种脱俗的感觉,看后让人非常静心。同学们,在欣赏国画的时候,我们不是一味地去看它像不像,而要更多去体会他的精神与气质,没有思想与内涵的人是画不出一副好画的,就算他画技再好,他的也是没有灵魂的。中国的水墨画,虽然没有涂颜料,它却会使你感受到春天的绿,秋天的黄和冬天的白,我们可以在画中找寻到自己精神的共鸣。好,刚刚讲了这么多,现在请一位同学看到这表格来归纳一下每个时期国画的不同特点。
1、汉武帝尊儒的措施:(1)政治方面:起用很多儒学家参与国家大政。他规定,地方定期选出孝子、廉吏当中央任官,甚至还擢升平民、儒士为相。这明显扩大了官员的队伍,提高了官员的文化素质,巩固了封建统治基础,成为汉武帝文治武功的重要组成部分。也给后世封建王朝在用人方式方法上面提供了宝贵的借鉴和启迪。(2)思想方面:采纳董仲舒的建议,“罢黜百家 独尊儒术”(3)教育方面:儒家经典“五经”为国家规定的教科书。兴办太学和设立地方学校进行儒学教育。公元前136年,汉武帝正式规定《诗》、《书》、《礼》、《易》、《春秋》为“五经”;前124年,又在长安兴办太学,规定太学生员为博士弟子,一律由儒家五经博士负责教授,学完经考试合格后即可到政府任官。这是封建国家利用政权的力量兴办教育、提倡儒学,其必然对整个社会的教育事业有一定的导向作用。
一、教材地位《音乐与影视艺术》是人教版高中历史必修(III)第八专题中的第三节内容。音乐、影视艺术属于意识形态范畴,是当时政治、经济的反映,是社会进步的产物。19世纪以来的音乐与影视艺术糅合了近代科学技术的元素,直接引领着文明发展趋势和社会风尚,满足人们不同层次的审美需要和精神追求。音乐、影视艺术在人类日常生活中无处不在,已经成为人们日常生活中的重要组成部分,所以具有重要地位。本课分三个部分介绍了19世纪和20世纪音乐的发展与变化以及影视艺术的产生发展。下面我就谈谈对这节课的教学思路。二、教材分析1、课标要求课标的要求是:列举19世纪以来有代表性的音乐作品,理解这些音乐作品的时代性和民族性。了解影视艺术产生与发展的历程,认识其对社会生活的影响。2、教学目标根据新课标、教材内容、学生实际,确定教学目标如下:(1)知识与能力:①列举19世纪以来有代表性的音乐作品,理解这些音乐作品的时代性和民族性。
20xx.01 – 20xx.01 XXX软件有限公司 幼儿班教师班主任代理工作在园内担任中班教师,负责课程美工,多元,音乐舞蹈。与家长做好沟通,快速处理日常工作中存在的问题。舞蹈美术教学做好自己本职工作外,周末也在美工特色班做主教老师,主要任课班级有小班学前班,和舞蹈艺术团的副教老师。班主助理工作协助主副班老师开展一日活动,撰写周计划、一日活动计划等教学计划;协助主班老师记录项目课程,记录课程叙事8篇,约2万字。负责幼儿安全与辅助班主任老师一切工作。日常保育工作了解幼儿园一日生活常规熟悉适应幼儿园工作。协助保育老师日常工作。
同时春节是我们中国的传统的节日,孩子们都喜欢过年那种欢快、祥和的热闹气氛,他们盼望着过年,期待着早日拿到压岁钱,可以尽情的放鞭炮。尽情的玩了,这时的情感体验尤为明显,我们在临近春节前后,可以开展主题活动“中国娃”主题活动,这一活动的开展除了让幼儿感受节日的氛围,还可以通过活动让幼儿了解中国传统的风俗习惯,培养幼儿热爱自己的祖国,感受节日的氛围,体验成长的快乐。在这一主题活动中我们根据班级幼儿的实际情况(班中一些幼儿对于在电视里看到、听到的歌曲较喜欢模仿,并且很容易记忆)所以选择了这首《欢乐中国年》为活动内容,并不是让幼儿来学唱歌曲,而是通过这种欢乐鼓舞的音乐让幼儿感受过年的气氛。大班幼儿他们在能力、情感上都呈现了个性化,较为喜欢用身体动作来表现自己现有的情绪情感,在日常活动中往往一放音乐他们就自发的在那里扭扭腰、跳跳舞,很喜欢听着音乐表达自己的情感。这也是我要选择这个活动的理由。1、体验过年的欢乐、喜庆之情,在轻松愉快的气氛中学习舞蹈。2、学习舞彩带和灯笼的一些基本动作。3、初步练习创编不同方位,不同幅度的舞彩带和灯笼动作。
雷锋精神是什么?这一环节是让学生用简单的词语或句子概括。通过这一活动,让学生概括出雷锋精神的内涵:像无私奉献、乐于助人、为人民服务、勤俭节约、尊老爱幼、勤奋好学、干一行爱一行、言行一致等等都是雷锋精神的体现。我们少年儿童是中国的未来和希望,雷锋精神的发扬和光大,创建文明校园的任务就落在他们的肩上,所以在这里我还设计了为发扬雷锋精神,创建文明校园“我该怎么做”这样的问题,目的就是让他们一起行动起来,学雷锋做好事,并制作了“荣誉”旗,奖励身边的好人好事。活动延伸:这里我设计了一个角色游戏活动——我要义卖献爱心,这个游戏学生们表现得非常积极,他们收集了自己不要的小文具或小玩具,将他们拿到集市上去卖,卖东西获得的钱,捐给王奶奶的孙女,因为王奶奶的孙女生病了,无钱治病。我觉得这个游戏使学生们懂得,一个人只要有爱心,只要愿意去帮助别人,无论什么方式都行,而且在游戏活动中孩子们体会到了帮助别人是一件多么多么快乐的事呀。
甲方: 乙方: 甲乙双方经友好协商,兹就甲方委托乙方制作甲方达成以下协议: 项目名称: 商贸城宣传DM印刷品 尺 寸: A3 材 料: 200克铜板纸 数 量: 240万份 单 价: 0.25 总 价: 陆拾万元整 根据《中华人民共和国合同法》及有关法律规定,经甲、乙双方共同协商签定本合同,以资共同严格履行。 1、付款方式:货款按甲方要求时间点验收合格后付清。2、交货时间:按甲方宣传时间点要求交货。印刷质量标准 1、甲方应认真审核设计制作文件,经甲方确认后开印。甲方确认后,若仍有错误,乙方不承担任何责任及费用;若甲方要求改版,其损失费用由甲方承担。乙方根据甲方设计制作图文印刷如有问题,乙方不负责任。
甲乙双方经友好协商,兹就甲方委托乙方制作____________事宜达成以下协议: 一、项目概要:___________________________二、项目明细: 项目名称:________________ 名称 尺寸 纸张 工艺 后工 数量 单价 总价三、付款方式: 支付方式:四、交货方式 交货时间:交货地点:乙方物流配送至____________________________,配送费用由乙方承担。具体地址如下:五、印刷质量标准 1、乙方前期制作应按提供样稿之要求按时、按质完成,印刷品质量以最终签字样稿为准验收;甲方应负责有关内容的及时校核确认以及收货验货。 2、甲方委托乙方设计制作的稿件,甲方有权要求乙方提供最多不超过四次的样稿确认。在乙方提供第四次确认稿时,甲方应完成所有的确认修改工作。如因甲方原因在第四次确认稿后仍需要进行修改,甲方同意视修改内容额外支付每页不超过100元的改稿费用。 3、彩色印刷品的色差范围正负应不超过样稿的10%,套印允许误差应小于0.2mm。其他如需检验的项目按国家新闻出版行业标准有关平版一般印刷品的质量标准验收。 4、甲方对印刷质量有任何异议,须在收货后三个工作日内提出,在任何情况下乙方不负责除印刷以外发行、广告的连带责任。
(一)社会安全教育 1.了解在公共场所活动时的安全常识,遵守公共规则,避免扰乱公共秩序行为的发生。 2.认识与陌生人交往中应当注意的问题,逐步形成基本的自我保护意识。 3.了解社会安全类突发事故的危险和危害,提高自我保护能力。引导学生形成基本的自我保护意识。
一. 教材分析我根据新课标内容,确定《XXXXXX》一课属于“————”学习领域,即通过看看、画画、做做等方法表现所见所闻、所感所想的事物,激发学生丰富的想象力与创造愿望。二、学情分析小学生是想象力与创造力非常丰富和活跃的时期,小学阶段学生已经认识了美术工具和材料,对不同的材料和工具的使用已有一定的掌握,会用线条和色块来表现他们所知道的东西。他们以自我为中心,喜欢按照自己的想法自由的表现画面;好奇心重,爱表现自己,但动手能力较差,只能用简单的工具和绘画材料来稚拙地表现自己的想法。这是学习本课的有利因素,结合小学生的学龄特点,使学生提高对美的感受能力和艺术创造能力,让他们在轻松愉悦的氛围中无拘无束地表现自己的想法,符合学生发展的特点
这篇关于国旗下讲话: 继承中华传统美德 弘扬尊老爱幼新风,是编辑为您整理的,希望对您有所帮助!国旗下讲话: 继承中华传统美德 弘扬尊老爱幼新风同学们:大家早上好!今天我的讲话题目是"继承中华传统美德 弘扬尊老爱幼新风".不少同学都知道,本周六是农历九月初九,它是我们中华民族又一个传统佳节——重阳节.据说重阳节从汉朝初就有了.东汉时期,民间在这一天又有登高的习俗,所以重阳节又叫"登高节".今天的重阳节,又被赋予了新的含义.1989年,我国把每年农历九月九日定为老人节,传统与现代巧妙地结合,成为尊老,敬老,爱老,助老的老人节.在这个属于老年人的节日里,我们祝愿所有的爷爷奶奶生活愉快,健康长寿!
【课件展示】《秦朝中央集权制度的建立》《教材简析》《教学目标》《教法简介》《教学过程设计及特色简述》【师】本节内容以秦代政治体制和官僚系统的建立为核心内容,主要包括秦朝中央集权制的建立的背景、建立过程及影响。本节内容在整个单元中起到承前启后的作用,在整个模块中也有相当重要的地位。让学生了解中国古代中央集权政治体制的初建对于理解我国古代政治制度的发展乃至我们今天的政治体制是十分必要的。 本堂课我采用多媒体和讲授法及历史辩论法相结合,通过巧妙设计问题情境,调动学生的学习积极性,使学生主动学习,探究思考。教师引导和组织学生采取小组讨论、情景体验等方式,达到教学目标。 本节内容分三个部分,下面首先看秦朝中央集权制度建立的前提即秦的统一
二、目标定位活动目标的制定应体现它的教育性、价值型和实际性,活动目标既是整个教育活动的起点和归宿,同时对活动也起着导向作用。因此从满足幼儿认知、情感、能力的发展需要,我制定了以下活动目标:1.知识目标:感知淀粉遇碘会变成蓝。2.技能目标:能运用各种感官,动手动脑,探究和解决问题。3.情感目标:乐意与同伴合作,体验活动的乐趣。重点:通过操作,感知淀粉遇到碘会变蓝。难点:尝试运用淀粉遇到碘变蓝的原理发现、探究和解决问题。三、活动准备:活动准备为活动的成功开展提供了可能,在科学活动中材料的结构及投放很重要,它直接关系到能否构成问题情境的探究点,有时甚至影响到活动的成败,因此,我为活动做了以下的准备:慢羊羊村长头饰、馒头、土豆、白菜、胡萝卜、香蕉、梨、标有字母A与B的奶粉,棉签、图卡、笔。四、教法与学法:新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者,活动中,教师不仅要用生动的语言,神秘的动作来感染幼儿外,还要积极调动幼儿的积极性,让幼儿真正成为学习的主体,创造条件让幼儿参与探索活动,在活动中,我使用的教法有观察法、示范操作法、练习法、经验迁移法。多种教学方法的整合,达到了科学性、愉悦性、艺术性的和谐统一。
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。