结合我们学校的教学条件和我自身会弹琴的优势,我还设计了课堂弹奏活动,激励学生练习好了参加圣诞联欢晚会给大家表演节目。 我把第一段的乐谱进行了简化节奏让学生弹奏,在弹奏基本完成后还设计了学生边唱边弹,并且分组让学生用电子琴自带的的打击乐器进行合奏练习,让学生在学唱的同时更加深入的体会音乐欢快活泼的节奏特点,同时让学生感受合奏的整体的音响效果,培养了学生的动手能力和集体合作能力。 六、总结 本课以歌曲《铃儿响叮当》为主要内容,听、唱、弹等教学环节都围绕他展开,各教学环节的设计易于统一,各项活动的设计均以音乐审美为核心,教学中关注段落的划分,注重引导学生的参与,体验,引导学生积极探索创造学习,展现音乐的节奏之美。
艺术课程作为一门新课程,是在已有的音乐、美术分科基础上构建的一门新课程,从传统的分科教学转变为多门艺术学科的沟通和融合。本课是从音乐切入的艺术课,让学生在欣赏、节奏、歌唱、表演等一系列音乐活动中感受音乐,学习音乐,表现音乐。让孩子们在歌唱描述春天的歌曲中体验春天的美丽景色;并综合了音乐、美术、舞蹈等艺术形式和表现手法,全面地培养学生的综合能力,使艺术课堂教学呈现勃勃生机,充分反映了课程改革的新理念。二、说教材1.教材分析歌曲《嘀哩嘀哩》是一首深受孩子们喜爱的歌曲,它反映的是少年儿童通过观察大自然的变化,寻找春天的足迹、迎接春天的到来。它以儿童天真、活泼的语气歌唱美丽的春天,抒发心中无限欢乐的感情。《嘀哩嘀哩》又是学生非常熟悉的一首歌曲,有的学生已经会唱,他们对音乐的理解与把握也有一定的能力。针对这首歌曲,最主要的就是运用孩子们感兴趣的方式帮助学生准确的演唱歌曲“嘀哩哩嘀哩嘀哩哩”有难度的乐句。
我采用故事导入的方法,以一段生动的猫和老虎的故事来吸引学生的学习兴趣,创设学习的情境,为学生营造求知的氛围,这样在轻松的氛围下,就激发了学生的学习兴趣。学唱歌曲先让学生完整地聆听歌曲,多次感受歌曲风趣的情趣,再听琴和小声哼唱歌曲的音调,然后鼓励学生自由的读歌词,有感情地读歌词。在通过小组的练唱小声随琴填唱歌词,分组讨论如何表现歌曲的情感,鼓励学生大胆的来唱,学生给予互评,教师给予指导,最终达到学生能完整地演唱这首歌曲。我放手让学生去自学,是因为:这首歌曲曲调诙谐,在学生的意识里很想唱好这首歌曲。鼓励学生大胆的尝试自主学习,带给他们的喜悦。男女生分唱,师生分唱,小组分唱。通过换方式演唱歌曲,不但能让学生进一步唱准歌曲,而且还能提高学生的学习兴趣。因为只有在唱准歌曲的基础上,才能演唱其它方式,这样就体现了“在玩中学,在学中乐”的实质。
(2)拓展训练跳兔子舞结尾:用跳兔子舞的游戏分两组进行表演,后面的同学双手搭在前面同学的肩上做跳兔子舞的动作排成两组,站在已经设计好的图线上按照图线上的先后顺序前进:一组先边唱边跳前进,二组等一组唱了八拍后再开始前进。(用运多种形式来表现歌曲,是为了加深学生对二声部合唱的理解,进一步体会二声部合唱的魅力)六、结束教学总结:听着小朋友们美妙的歌声和精彩的表演,看着大家亲密无间的的合作,老师的心里无比开心!我想,小朋友们通过对本节课的学习,会更加爱护人类的好朋友-----动物,老虎是我们国家的一级保护动物,希望小朋友们从小提高保护动物,保护自然,珍爱生命的意识。
4、再听歌曲。(了解歌词内容)师:待会儿听清楚谜面的同学请举手示意一下。(利用多媒体课件,给学生播放歌词中所演唱的内容,文字与图片相结合)教师与学生一起分析歌词内容。(有问有答的谜语)师:对,以问答对唱形式演唱歌曲是民歌的一个特点。5、请学生小声随音乐哼唱歌曲旋律。6、用打击乐器为歌曲伴奏。(四)拓展教学。(10分钟)1、创编歌词。(意图:进一步了解一问一答的对歌演唱形式)师:我们现在一起来用谜语创编出新的的歌词,保持歌曲原有的节奏与结构。(学生分组创编,之后分组展示。)(教师可做一定的提示,教师给出谜底,请学生编出谜面来。)2、了解云南。(意图:通过了解云南歌舞、风俗,让学生有更广阔的视野,更加了解民族文化、了解民族音乐)师:云南的民歌不仅好听,那里的自然景色、人们的舞蹈都很美!
在歌曲学习中,由于歌曲节奏疏密相间,运用了许多十六分音符构成的节奏型以及切分节奏,因此节奏是个难点。在演唱过程中,我发现学生对十六分音符和切分音符这两个节奏很难掌握,因此,我先让学生学习这两个节奏,并设计了两条节奏让学生练习,让他们拍手打节奏,使他们熟悉节奏的特点,再用到歌曲中,这样学生在学唱的时候脑子里就有了初步的印象。另外,四年级学生的识谱能力较弱,在看到旋律的时候不能一下就反应出来,尤其是这种旋律和节奏较为复杂的歌曲,所以,我尽量让学生以听范唱为主,跟着录音一起把歌曲唱好。为了解决歌曲中切分节奏,我采用请学生模仿教师拍节奏、师生对拍、接龙拍击等方式解决,在活动中适时地填入歌词(山中的清泉香喷喷;湖里的水菱甜又香),并加入小间奏边拍边读(学生容易忽视小间奏);听教师演唱学生在小间奏处拍手;最后过渡到学生听琴演唱而小间奏处用高八度音伴奏等,学生在和教师的互动中不仅学得津津有味,而且效果非常好。
9.恩,小朋友们唱得不错,但是,我觉得你们可以唱得更好!这样,小笛子和大鸭小鸭会玩得更开心!现在,脚放平,背坐直,带着愉快的心情,我们再来一次。10.今天最大的难题来了,小朋友们想不想挑战一下自己呢?好的,请你跟我这样唱,(教唱旋律,分两大组合作)11.同学们今天的表现实在是太棒了!比小笛子的歌声更美妙,更动听!老师希望我们每一位小朋友,都像快乐的小笛子一样,永远唱着快乐歌,快乐成长!让我们和小笛子一起,唱起来吧!(播放音乐,结束本课)。教学反思:快乐的小笛子是一年级上册第八课的一节唱歌课,歌曲非常欢快活泼,音乐里面加入了小鸭的叫声,非常具有童趣,学生都很感兴趣。但是这首歌曲速度比较快,很多学生一开始跟不上歌曲的节奏,显得手忙脚乱。所以我设计了吹笛子环节,让学生模仿小笛子的声音与动作,并进行形式的变化,如个人演奏、两人合奏,小组竞赛等形式,让学生非常感兴趣。学生很快就掌握了歌曲的难点,学生在快乐中学会了歌曲。
(时间不早了,森林里顿时热闹起来,小动物们在干什么呢?)·聆听: 听音乐第二段,感受音乐轻快的情绪。生根据自己对音乐的理解与想象回答。然后再视听结合,播放小鸟飞、在大树上叽叽喳喳的情景,进一步感受此段音乐特点,并随音乐表演。(小熊猫也出发了,看!哥弟俩抬着水桶去打水呢)。·听赏音乐第三段。感受活泼明快的"熊猫主题"。·鼓励学生模仿小熊猫打水、抬水的样子,并随音乐表演,体验音乐所表现的情绪与形象。3、完整聆听多媒体完整播放音乐及画面,学生整体感受音乐所描述的情景,同时培养学生良好的聆听音乐的习惯。4、情景表演学生选择自己喜欢的头饰,扮演动物角色,分小组随音乐进行情景表演,体验音乐带来的乐趣及与他人合作的快乐。5、评价反思、德育渗透。(四)、其他选择1、本课开始部分可用猜谜语导入。2、教师可以先让学生完整欣赏音乐,让学生根据音乐想象描述的情节,再分段欣赏。
乐曲是三部曲式,D大调,3/8拍,快板。乐曲开始是一个短小的引子,由钢琴演奏。前面的5小节之后,小提琴从弱拍进入,用弹跳式的弓法演奏,由这里开始的一系列16分音符和8分音符,都加有顿音记号,取得了绝妙的效果,把洋娃娃那可爱、活泼,又有几分笨拙、机械的动作描绘得活灵活现。B段转A大调。曲调优美、婉转,在性格上它与A段形成鲜明的对比。后半部分在调性上做文章,使乐曲产生了色彩斑斓的效果:然后A段再现,最后轻快地结束全曲。学生会很喜欢这首小曲,从中感受小提琴的音色,感受乐曲活泼欢快与优美抒情的对比。 聆听《会跳舞的洋娃娃》教学基本要求1.完整聆听乐曲,感受乐曲的情绪。2.乐曲是由什么乐器演奏的?乐曲的洋娃娃怎样跳舞,请你用动作表现出来。3.复听乐曲,一部分同学随着音乐做动作。用手半握拳敲击节拍。一部分学生可随着音乐用手指按图谱划动,感受乐曲的快慢。
课件及教具的说明:课件:教学光盘。贴纸:带不同色彩的五个小标题设计意图:教学光盘可以让小朋友清楚的聆听到五段音乐,为哼唱歌曲和表演做准备。贴纸可以一方面让学生看得更清楚;另一方面在教学中使学生们更好地为乐曲起名字打好基础。六、教学反思1、重点及难点的解决效果:本课重难点解决较好,学生能分辨不同情绪的乐曲,随音乐表演在教师的指导下有了较大的进步。2、本课成功之处:(1)学生参与的积极性很高(2)特别喜欢随音乐表演,表演能力有了较大的提高。(3)能分辨不同情绪的乐曲,还能较准确的起名字,学生对音乐欣赏产生了浓厚的兴趣。3、本课失败之处:个别同学表现有难度,教师还要加强指导4、生成问题:学生在起名字和表演时都出现了较好的创编5、今后调整思路:一方面老师要加强自身业务水平的提高,另一方面在随音乐表演的环节还要加强指导。
第五个环节:最后播放一段音画视频,儿童舞蹈《数鸭子》,让全体同学跟着音乐哼唱儿歌,让她们感觉回到了自己的童年时代。让学生即兴创编舞蹈动作,并上台表演。这样,使学生在律动中获得身心愉悦,把整节课堂气氛推向了高潮。并在欢乐的歌舞声中结束。接下来说说我的作业布置情况: 1、知识巩固性的作业,做练习题书中P37页第一题,第二题。2、拓展性作业,收集儿歌《》《》《》并找出音符在其乐曲中的长短。七、板书设计(一)黑板中央上方写上题目——音的长短。(二)左上方依次写下单纯音符、几种常见音符及其形状。(三)画出各音符之间的时值比例关系图。(四)右边画出音符及其时值和单位拍的对照表。八、教学反思最后我就说说教学反思,本节课的教学围绕着学生想、听、唱、跳这样的动作层层推进。调动了学生的学习热情,关注学生的个性发展。激发了学生学习音乐的兴趣,增强她们的基本技能,为以后从事幼教工作打下坚定的基础。最后以一句歌词,来结束我的说课。
十一、说互动:教师与学生的互动、学生与学生的互动和小组之间的互动,以多种形式表现歌曲。十二、说板书:本节课我的板书设计主要以突破重难点为主,可让学生直观看到所要学习的新知识,很快掌握6/8拍节奏的特点,并巩固加深所学习过的音乐知识,在演唱的时候能够完整准确地运用所学的知识。十三、说媒体:主要目的用于聆听和感受音乐,让学生更好的参与教学活动,也充分调动了学生的多种感官,启发学生的联想和想象力,激发学生的学习兴趣与求知欲,丰富学生情感。十四、说评价:以多元化形式评价,本节课我采用的是师生评价,老师对学生的评价,学生对老师的评价,学生对学生的评价。贯穿整个教学过程,以利于促进学生发展。学生对学生的评价:体现在音乐活动中,学生对学生的表现给予正确的评价,对音乐的表现有一个很好的认识和提高。
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。