活动准备:1、提前几天告诉幼儿星期×下午我们到“玩水池”玩水。老师、幼儿及家长共同搜集玩水的材料。塑料制品:果奶瓶、塑料玩具、小水桶等;木制品:积木、树枝、冰糕棍、树叶等;纸制品:硬纸壳、皱纹纸、报纸、作业纸、纸盒等;泡沫制品以及小石块、鹅卵石、小铁块等。并让幼儿用塑料袋将材料装好,作上标记,放在玩具柜里。2、活动前,检查水池的安全、卫生。池底是否有异物,池水是否清洁,池水高度是否适当。活动重难点:感知物体的沉浮现象。 活动过程:1、感觉游戏。鼓励幼儿同老师一起到水池玩水(个别胆小不愿到水池玩的幼儿暂不强求,允许他们在水池边玩)。引导幼儿看看水中的小脚丫或凉鞋;试试用双手捧水;体会把手掌平放在水中与手指插入水中的不同感觉;体验水中走路的感受。帮助幼儿回忆、再现过去所学知识,如:能看见水中的小脚丫,是因为水透明、无色,捧着的水一会儿没有了,是因为水会流动等等;鼓励幼儿说出自己的感受或发现,如:把手掌平放水中用的力比手指插入水中用的力更大,在水中走路比在地上走路慢。
活动目标1、探究、发现各种形状的纸片在快速转动时都会呈现出圆形。2、在讨论、记录、交流中积累和提升有关转动的经验。3、乐意针对问题作进一步的探究,体验愉快的情绪和探究的乐趣。 活动准备1、圆形、椭圆形、三角形、正方形的纸片(中心有小孔)、可制作陀螺的塑料小棒、蜡笔等各若干。2、实物投影仪。3、猜测记录表人手一张。 活动过程一、导入活动,激发探究兴趣1.投影展示各种图形,幼儿观察讲述都有哪些图形和我们玩转陀螺的游戏。2.请幼儿结合自己的生活经验,说说什么形状的纸片比较适合做陀螺。 二、在做做、玩玩中发现圆形的纸片在转动时也是圆形的1、提出制作与观察的要求:先选一张圆形的纸片把它做成陀螺玩一玩,看看它转动起来是怎样的。2、幼儿制作、玩耍陀螺,引导幼儿观察陀螺转动起来是怎样的。 3、请幼儿说一说陀螺转动起来是怎样的。幼A:我的陀螺转动起来是歪歪斜斜、摇摇摆摆的。幼B:我的陀螺先是慢慢的,后来越转越快,最后就停下来了。幼C:我的圆形陀螺转起来也是圆形的。幼D:陀螺转动起来它的形状有点模糊。(评:在这里,教师因势利导,让幼儿根据自己的经验先选圆形的纸片制作陀螺,这样既有利于幼儿习得制作陀螺的方法,也有利于引导幼儿更多地关注陀螺在转动时发生的一系列变化,为下面的环节作好铺垫。) 三、在猜猜、试试、说说中发现不同形状的纸片在快速转动时都呈现出圆形1、出示记录表,介绍记录方法:“问号”表示想一想,“小手”表示试一试。把我们的猜想画在问号下面,等一会儿把尝试后的结果画在小手下面。2、让幼儿猜一猜三角形、椭园形、正方形的纸片转动起来是什么形状的,并把自己的猜想记录在表格中。 3、个别介绍自己的猜想。幼A:三角形转动起来是三角形、椭圆形转动起来是椭圆形、正方形转动起来是正方形,不会变的。幼B:它们转动起来都会变成圆形。幼C:转动起来会变成花形。幼D:正方形会变成圆形,三角形还是三角形.(评:“猜测与假设”有助于激活幼儿的思维。动手前先动脑,幼儿的思维会处于一种激活状态+这无疑对发展幼儿的思维能力起到了重要作用。在这里,我对幼儿的任何猜测都不作评价,而是留待他们在接下来的环节中,通过自己的操作来发现与验证。)4、实验验证并记录结果。引导幼儿仔细观察不同形状的纸片在快速转动时是什么形状的,并把实验结果记录在表格中。
准备:·知识经验准备:幼儿已经认识了一些常见的植物·材料准备:中草药图片·重点:在植物中对中草药进行分类 过程·情境表演“医院”——教师饰“病人”因咳嗽去看病,“病人”不能吃西药所以幼儿饰“医生”开了一贴中草药“川贝止咳露”,“病人”吃后好多了。——小朋友,你们知道医生给我开的是什么?·感知了解 ——多亏医生给我开了中草药治好了我的病。今天还来了许多中草药朋友,大家用自己的好办法也去认识认识它们吗?
2.了解动物尾巴的作用。 【活动准备】 歌曲《小画家》磁带、故事《神奇的尾巴》磁带,各种动物身体和尾巴分开的图片(金鱼,松鼠,猴子,燕子,老牛,壁虎) 【活动过程】 一.今天老师给小朋友带来了一首好听的歌曲,咱们来一起听一下吧!(歌曲《小画家》) 提问:1.歌曲中的小画家是谁啊?(丁丁)2.丁丁画的什么?画的怎么样啊?(螃蟹四条腿,鸭子小尖嘴,兔子圆耳朵,大马没尾巴)3.丁丁是不是一个优秀的画家? 教师小结:丁丁做事不认真,没有认真观察,只说大话,所以没有画好,我们小朋友可不要向他学习。
2、大胆尝试用身体创造洞洞,体验洞洞的有趣。 活动准备:图片、课件 活动流程与问题设计: 一、联系经验看图讲述 ●意图:联系生活经验,讲述梳理洞洞的已有经验。 1、我们的身体都有许多有趣的地方,今天我们就来找找身体上有没有有趣的洞洞。(出示图片)看看,这两位小朋友身上哪里有洞洞?2、牙齿很坚固,怎么会有洞洞?这个洞洞会给我们带来什么麻烦?3、心上有洞洞,会有什么感觉?什么事会让你感到心痛、难过?、 小结:这些洞洞给我们带来了麻烦、疼痛、难过,我们都不喜欢它们。
2、探索复制指纹的方法,萌发多样探索的意识。3、初步激发对科学、创造和探索自身的兴趣。材料环境创设:数字卡片、小纸片、颜料、印泥、橡皮泥、镜子、抹布等。设计思路:“我们的身体”是本班幼儿正在探索的主题活动,在探索小手的活动中,罗宜家提出了这样一个问题:“手指上的线叫什么呀?”但是,小朋友谁都说不上来。这是一个颇具价值的问题,因为它是我们在主题活动中生成的,有利于孩子们继续对自身进行探索的兴趣的培养。而且,现代的指纹技术正越来越与高科技融为一体,涉及到了很多方面,适当地在这方面丰富一些见识,不仅能开阔幼儿的眼界,且对于幼儿的科学探究兴趣也会有好处。另外,作为一个新班,我们的孩子们在探索能力上还显得很单一,缺乏运用多种方式探索的意识,本活动中鼓励幼儿大胆常识多种复制指纹的方法,对幼儿的多样化探索意识也是有帮助的。活动中,处于整合性原则,我还在其中,融合了识数教育,即观察时给手指纹编号,结合一切可利用因素进行自然衔接下的教育。拓展内化观察比较操作体验提问交流流程:1、提问交流:1)请罗宜家提出自己原先的问题。
活动目标:1、让幼儿初步了解磁铁的基本特性2、了解磁铁在生活中的用途3、培养幼儿的探索兴趣 活动过程:一引题师:小朋友,今天老师要带你们去一个很好玩的地方,但是去那个地方玩我们小朋友都要带上一样东西才能进去,我们看看我们要带什么东西进去?(教师出示磁铁)幼:磁铁师:现在小朋友们可以拿着磁铁进去玩了?你们看看会发生什么事?幼:好师:小朋友看看为什么磁铁吸不住这个东西啊?幼:因为它是木头的师:小朋友聪明,那你们看看磁铁为什么又不能吸住这个东西呢?幼:因为它是塑料的
写作指导:第一题要求写出自然美,在自然美中融进自己的感情。小路、流水、山峦、森林、天空、大海……都是实体事物,因此首先要求用写生的办法把它们表现出来,要写得准确,写出它们的特点和个性,尤其是写出它们的美。同时,也要把赞美之情不落痕迹地融化在描写之中。第二题是写一幅风景画或一张风景照片中的自然美景,以及美景中的一些细节,同时把自己心动的感觉写出来。在这里,关键是找到画或照片中的美,找到心动的感觉,如果找到了,再用文字把这美和感觉表达出来。当然,写风景美和写自己的感觉应是乳水交融的。第三题是用动情的笔墨把自己的一种经历写出来。这些经历似乎都是细节,都不是惊天动地的大事。是细节,就容易碰到,在题目列举的四种中,学生不难找到。即使不在这四种中,也可以,只要这种经历给了自己心灵以震撼或潜移默化的影响。
环节三案例分析突出难点这一环节,我将用多媒体展示我国反腐行动,将一个个贪污腐败者给予法律制裁的案例和东突分子分裂活动的例子,来得出我国专政的职能。这些例子具有典型性和时效性,能让学生容易从例子中得出知识点,引导学生理解我国的专政是对极少数敌人实行的专政。并通过《反分裂法》的制定,让学生讨论为什么我国既要实行民主职能又实行专政职能,以此来分析民主与专政的关系(区别和联系)。培养学生获取信息的能力,自主学习的能力以及全面看问题的能力,再结合教师的讲授,给学生一种茅塞顿开的感觉。环节四 情景回归 情感升华这一环节,我将设置分组讨论,让学生们分别从人民民主专政的重要地位、“民主”与“专政”这两项职能、改革开放的历史条件下新时期内容三个方面来分析为什么坚持人民民主是正义的事,讨论后每组派出代表来发表各自组的结论,得出我国要坚持人民民主专政。通过小组讨论,使学生学会在合作中学习,提高学生的语言表达和思维能力。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
老师们、同学们:大家好!今天我演讲的题目是《专心致志,做学习的主人》。满怀着憧憬和希望,我们开始了新学期,这是一个能让我们实现理想,见证成长的一个学期。然而,激越澎湃之后,随之而来的却不尽是欢声与笑语,学习上虽然有着快乐,却已不再轻松,面对着一个个强手,看着他们的出类拔萃和独立张扬的个性,你或许自卑,或许哀叹,甚至怨恨自己的不争,但是,千万不要放弃,要坚信,只要有付出,就一定会有回报。随着新课改的全面展开,和xx、xx年高考新方案的公布,学习和生活都向我们敞开了新天地,也给了我们更多的挑战。每一位同学都要随时根据阶段考试的结果,和老师们的指导适时进行调整,不要自以为是,只埋头学习,不明确方向。这就要求我们要从现在起:首先,要养成上课积极思考,踊跃表达,质疑问难的良好习惯,只有这样,大家集思广益,相互交流,不仅有立于打破狭隘的思维界限,拓宽四位空间,而且还能增强相互合作和交流的能力。
学会做人同学们:联合国21世纪教育委员会提出21世纪教育的四大支柱,即学会求知、学会做事、学会共处、学会做人,学会做人是四大支柱的关键和核心,也是教育的目的和根本。学会做人,这是我们每个人都要面对的问题。不管一个人有多少知识,有多少财富,如果不懂得做人的道理,这个人最终不会获得真正的成功和幸福。希特勒、成克杰、胡大海,他们有知识、有财富、有地位,单他们不懂得做人的道理,最终成为历史的罪人。在新千年到来之际,西方人在评选20世纪最伟大的思想家时,把马克思排在了首位。他的思想和人格魅力永远鼓舞着一代又一代人。是盒子,埋在哪里都不会失去价值;是粪土,再张扬也逃不掉被唾弃的下场。人,从本质上讲,是社会的人。做人,在不同的国家,同一国家的不同历史时期,都被赋予不同的内容和色彩。因此,学会做人,离不开现实社会。
本活动在选材方面适合时令特征和中班幼儿的年龄特征,幼儿容易理解。在活动中我运用了启发提问法,观察发现法,引导发现法和肢体表现法。同时融汇了常识、健康和体育科目的知识。幼儿通过看看——做做——想想——说说的教学环节,来体验冬天御寒保暖的种种方法,总的来说整个环节环环相扣,层层递进,使幼儿在不知不觉中增长了知识,培养了能力。让幼儿搓手、捂热水袋、做操体现了师幼互动,气氛很活跃,突出了活动的重难点,也是这次活动的亮点,我把挂图放在活动末尾让幼儿来看图总结,比以往放在开始部分枯燥无味地讲解更为巧妙,幼儿通过亲身的体验来全面的了解活动的内容。培养了幼儿的认知能力。
一、音乐入场。师:Hi,小朋友们好,我是焦老师,焦老师呀今天早上发现了一处可好玩的地方了,想邀请小朋友们一起去,你们想去吗?走,我们出发啦!(音乐入场)师;哇!小朋友的表演真棒!咦!小朋友们瞧,这个好玩的地方到了。是什么地方呀?(CO Co俱乐部)今天呀!CO Co俱乐部可热闹了,哦!原来呀,今天是CO Co俱乐部开张大吉的日子。那让我们一起为他庆祝庆祝吧!师:小朋友看,这是COCo俱乐部的宣传弹,让我们来看看CO Co俱乐部今天准备了什么节目好吗?(好)“1、2、3、翻,”师:“喔,原来是朗诵古寺?不知道是什么古寺呢?让我们一起来瞧瞧吧。(黑板挂古寺)哗,这里面有这么多的字,你们认识吗?(认识)那你们来告诉我吧。小朋友的声音真好听,让我们一起来表扬表扬自己吧!焦老师呀还告诉你们一个好消息,今天我们来到CO Co俱乐部,刚好是它开张大吉的好日子,所以呀,今天不光有许多的礼物派送,而且还有精彩的节目,小朋友们想参加吗?(想)好,那我们赶紧找个位置坐好吧。
老师们、同学们:大家早上好!今天我讲话的题目是(爱国爱家爱校爱生活)。当新的一天来临,当五星红旗冉冉升起,我们总会想起xx要求引导青少年树立正确的社会主义荣辱观的号召。其中第一条就是:以热爱祖国为荣,以危害祖国为耻。要热爱祖国,就要有爱国主义精神。中华民族是一个伟大的民族,爱国主义精神是我们这个民族最美的花朵。爱国,是一个神圣的字眼,在历史发展的曲折过程中,爱国主义历来是我国人民所崇尚的。进入二十一世纪,我们伟大的祖国日益繁荣昌盛,爱国主义更应该成为这个时代的最强音!爱国主义是我国各族人民团结奋斗的光辉旗帜,是推动我国社会历史前进的强大动力,而爱国教育无疑是最重要的教育!同学们,我们作为新世纪的青少年一代,是祖国的希望,祖国的未来必将属于我们。因此,大家更要继承和发扬崇高的爱国主义精神。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。