一、说教材《有趣的算式》是北师大版小学数学四年级上册第三单元《乘法》中的内容。它是在学生已经学会运用计算器进行一些简单的四则运算的基础上来进行教学的。学生学了这部分内容,能为以后进一步体会探索的过程和方法,发现乘法的结合律和分配率打下基础。为了更好地体现《数学课程标准》的理念,培养学生的推理能力,促进学生数学思维发展,使学生在面临各种问题时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决生活中的问题,感受到数学在生活中的意义。二、说目标根据以上对教材的理解与内容的分析,按照新课程标准4~6学段数与代数中的要求,我将本节课的目标定为:1、知识与技能目标:通过有趣的探索活动,能发现有趣的乘法算式中蕴含的规律,并有条理的进行归纳概括,发展合情推理能力。
3.制定教学目标根据教材内容、教材的编写意图和学生的认知规律,制定本节课的教学目标为:知识与技能:给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。过程与方法:从熟悉的、有趣的生活背景中让学生感受观察范围的变化,通过观察、操作、想象等活动,发展学生的空间观念。情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。4.教材的重难点根据教材内容的地位、作用和学生已有知识经验的实际情况,制定本节课的重难点是:经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念,能解决日常生活中的一些现象。
六、说学法本节课的学法主要是自主探究法、合作交流法。教法和学法是和谐统一的,相互联系,密不可分。教学中要注意发挥学生的主体地位,充分调动学生的各种感官参与学习,诱发其内在的潜力,独立主动的探索,使他们不仅学会,而且会学。学生通过小组合作的方式,自主探究设计出秋游方案,然后每个小组间进行交流,最后推选出最合理可行的方案。学生通过解决生活中的实际问题,从中发现与数学之间的联系。并通过同伴间的交流、讨论等多种方法制定出解决方案,他们从生活中抽象,在实践中体验,最后在讨论中明理,从而得出了最佳的方案。七、说教学过程为了能很好地化解重点、突破难点达到预期的教学目标,我设计了三个教学环节,下面,我就从这三个环节一一进行阐述。(一)创设情境、激发兴趣
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
一、说教材《吨的认识》是义务教育人教版三年级上册第三单元第3节的内容,这部分知识是在学生学习了克、千克的基础上进行教学的,本单元学习质量单位吨,通过学习对质量单位会有一个比较完整的认识,也为提高学生解决问题能力和实践能力创造了条件。本节教学内容包括通过插图说明吨在实际中的应用,结合大米的重量,初步建立1吨的概念,明确1吨=1000千克,能进行吨与千克间的换算。二、学情分析通过课前调查了解到,20%的学生对于吨的概念比较模糊,不知道吨是质量单位,有65%的同学听说过吨这个单位,但并不知道一吨到底有多重,有15%的同学知道吨是一个很大的质量单位,在货车的车门上、电梯上看到过吨这个单位。
一、说课标《数学课程标准》明确指出:数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作??交流等活动,使学生通过数学活动,掌握基本的数学知识和技能。所以我把“加强生活体验,注重学生发展”确定为本节课的教学理念。二、说教材:1、教学内容在知识体系中的地位 时间的计算这一内容是在学生认识了时、分、秒的基础上教学的。学生学习一些有关时间的简单计算,可以加深对时间单位实际大小的认识,培养时间观念。2、本课时的教学目标 通过教学使学生能掌握时间换算的方法,正确地进行时间单位之间的换算;通过教学使学生学会计算两个时刻之间经过的时间;养成遵守时间,爱惜时间的意识和习惯。3、本课教学的重点:计算间隔不超过1小时的两个时刻之间经过的时间。 难点:开始和结束的时刻及经过的时间三者之间的关系。知识生长点:让学生在认识了时、分、秒及时间单位的进率的基础上进一步学习时间单位的简单换算,和经过时间的计算。
二、说教法学法:学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发 学习热情,让学生在经历、体验和运用中真正感悟知识。在动手中引导学生认识圆,理解圆的特征,有目的、有意识地安排了让学生折一折、画一画、量一量、比一比等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用心去辨析同学们的答案。教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。
二、学情分析六年级学生喜欢各种各样的探索活动,他们希望能够在活动中自己去研究事物、发现问题,更渴望能在研究活动中解决自己的疑问,从中获得成功的喜悦。结合学生的实际特点和教学的主要内容,本节课我着重通过开展丰富的探索实验活动,发展学生的学习能力。三、教学目标根据以上结构特点的分析和学生的认知规律,确定了本节课的教学目标如下:(1)知识目标:使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。(2)能力目标:通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。(3)情感目标:培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。四、教学重难点和关键我确定本节课的重点是:推导圆周长的计算方法。教学难点是:学生以合作实践,讨论交流的方式探究圆周率的含义。
4.学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。四、说教学目标知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
一、说教材倍的认识是在学生认识和理解乘法意义的基础上学习的,学生将通过对已学习的有关乘法的知识进行迁移获得“倍”的概念。“倍”是一个新的概念,是一种数量之间的关系。通过对本内容的学习,初步建立倍的概念和简单的数学模型,有助于学生深入理解乘法的含义,拓宽应用乘法解决实际问题的范围与能力,培养数感,为今后学习分数、小数和百分数等相关知识奠定基础。二、说教学目标根据教材的特点和学生的实际情况,我预设目标如下:1、在充分感知的基础上,理解一个数是另一个数几倍的含义,初步建立倍的概念。2、通过动手操作,培养几何直观。3、使学生初步体会数学知识与日常生活的联系,培养学生观察、操作、分析及语言表达的能力,养成良好的学习习惯。三、说教学重难点:教学重点:理解一个数是另一个数几倍的含义,初步建立倍的概念。突破方法:通过反复的学具操作活动,让学生去观察、经历、体验和探索,在亲身感受中建立“倍”的概念。
尊敬的各位评委,各位老师:大家好!我说课的内容是人教版小学数学三年级上册第三单元第2节《千米的认识》。它是在学生学习了米、分米、厘米、毫米等长度单位的基础上进行教学的。“千米”不像厘米、分米那样看得见、画得出,所以学生对“千米”的感知相对较少,这就为学生认识“千米”带来了困难。紧密联系学生的生活,灵活运用教材,是解决这一困难的有效途径。根据上述内容的分析,我确定了如下教学目标:1、使学生初步认识长度单位“千米”,建立1千米长度观念,知道1千米=1000米。2、体验1千米的实际长度,培养学生的观察能力、实践能力,发展学生的空间想象能力。3、感受数学与日常生活的紧密联系,在与同伴交流中体验学习数学的愉悦心情。其中,使学生建立1千米的长度观念,体验1千米的实际长度是本课教学的重难点。
五、说教学过程兴趣是学习的动力,问题是思维的核心。为了激发学生的兴趣,发展学生的思维,本节课从学生感兴趣的事物出发,始终以问题为引领,遵循“现实题材→数学问题→数学模型→数学方法→解决问题”的过程来设计教学,引导学生将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。根据这样的新课标设计理念,我安排了以下五个教学环节:(一)创设情境,引入比为激发学生的兴趣,我从学生感兴趣的杨利伟叔叔及其事迹出发,设置问题,逐步引入新课。同学们,认识杨利伟叔叔吗?他就是载人飞船“神舟”五号的航天员。2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。