2学情分析1、学生学习美术的态度:很多学生上美术课时会抱着“玩”的心理,针对学生的这种思想,我们应当根据学生的年龄特点,在备课过程中注意挖掘教材中有趣的内容,寻找学生的兴趣点,充分地让美术教学体现出身心愉悦的活动特点,寓教于乐,防止把美术课变成一种枯燥的令人生厌的劳动。2、学生认知发展分析:在美术课堂上常常听到这样的声音:“我画(做)不好”、“我不会画(做)”;这就需要美术教师在课堂教学中注重引导学生感受、观察、体会、表现,让学生在一系列“玩中学”的活动过程中慢慢树立信心。所以围绕本课教学目的和任务,我采用情境教学法、观察对比法、直观演示法三种教学方式;学生运用四种方法进行学习:观察法、讨论法、实践体验法、合作交流法;努力营造一个开放和谐的课堂氛围,顺利完成教学目标。
3课题类型造型表现4教学目标1、认识三原色,让学生初步了解三原色的知识。2、观察两个原色调和之后产生的色彩变化,说出由两原色调出的第三个颜色(间色)3、能够调出预想的色彩,并用它们涂抹成一幅绘画作品。5重点难点1、引导学生观察三原色在相互流动中的色彩变化。2、引导学生进行色彩的调和、搭配。3、培养学生爱色彩、善于动手、善于观察、善于动脑的能力。
2学情分析一年级学生对美术的兴趣很高,对五颜六色的物体特别感兴趣,孩子们课前做的准备很好。3重点难点1.节日里烟花的画法。2.油画棒和水彩颜料相结合的涂色技巧。教学活动活动1【活动】教案第5课五彩的烟花
一、教材的地位与作用 本节主要学习一元一次不等式组及其解集的概念,并要求学生会用数轴确定解集。它是一元一次不等式的后续学习,也是一种基本的数学模型,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。二、学情分析从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化归能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,本节课的设计是通过学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
㈡教学目标⒈知识目标:①理解同类项的概念,并能辨别同类项;②掌握合并同类项的法则,并能熟练运用.⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力.⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育.
序数是表示集合中元素次序的数,是用自然数表示事物排列的次序,让幼儿回答“第几”的问题。认识序数要以认识基数为基础。本班幼儿已学习了10以内初步数概念的数序,为学习序数做好了准备。学习序数不必像学习基数那样逐个数地形成概念,因此可以分两段集中学习10以内的序数,先学5以内的序数,再学10以内的序数,本节课就将内容定为学习5以内的序数。学习序数要求能从不同方向(从左到右,从右到左,从上到下,从下到上)确认物体的排列次序。由于本节课是第一次接触序数,老师就降低了要求,即从左到右,从下到上来排列物体的次序,这符合幼儿的认知经验。在生活中,幼儿已习惯这两个方向来排列物体的次序。数数是从左到右数的,楼层是从下到上数,避免了逆排序造成的干扰。
1、数字找朋友——激发幼儿对数学活动的兴趣。 2、找数字——幼儿在食物上找数字,并激励幼儿相互交流,说说自己的发现。 3、生活中的数字——通过讲述、猜想来激励幼儿畅所欲言,充分调动幼儿的积极性,营造轻松愉悦的氛围,拓展幼儿已有的生活经验。 4、幸运号码——通过游戏发现数字的趣味性和丰富性,从而更真切的体会数字的神奇,随便的调换数字的位置就可以排成不同的数字组合。 5、设计电话号码——幼儿运用已有的知识解决问题,为自己编电话号码。让没个幼儿参与其中,从而体验成功感,使他们对数字产生极大的兴趣,激励幼儿在生活中主动观察事物和运用数字,为以后学习奠定基础。
1、提供生动有趣的学习情境。进行高矮的比较,并不是纯粹的知识性的学习,而是学生的一种体验性的活动,它包含了丰富的过程性学习目标。在这里,我提供具体有趣的素材,引导学生通过观察、比较、思考,使学生获得对比较高矮活动的体验。教学时,我充分关注学生活动的过程,而不是获得一些具体的比较结果。2、引导学生思考与交流。这节课的学习我力争让学生在动手操作的活动中领悟比较的方法,进行有序而且有条理的思考。在比较的过程中,学生会有不同的方法,教师应注意进一步培养学生倾听,尊重别人想法的良好习惯,并引导学生进行交流。3、联系生活实际,组织比较活动。除教材提供的情境外,我有联系到生活实际。引导幼儿不受物体大小、形状的影响,按高矮给物体排序。
这篇《国旗下的讲话演讲稿:文明是种无形的力量》,是特地,希望对大家有所帮助!敬爱的老师,亲爱的同学们:大家请看我手中的这张图片,你是否发现图中女孩的双手有什么不同?(向观众展示图片)是的,他的双手只有两个手指头!如果你只有两个手指,你会努力让自己和同龄人一样生活吗?如果你只有两个手指,你是否坚信自己的生命仍然可以圆满?图中的女孩,却用这样一双只有两个手指的右手,做了一件感动中国的事情。她叫潘娜威,辽宁营口市一名普通的学生,她用着两个指头见了无数的废旧电池。有的时候,小娜威捡废电池,周围小孩子看见跟着学,有的孩子父母看见了,就特别不高兴地喊,多脏啊,捡哪个干嘛?小娜威一点也不客气地回敬说:“手脏了可以洗,地球脏了怎么洗?”
2、通过讨论、分析,理解一个数分成两个部分,如一个不风增加1,另一个部分就要减少1。 活动准备 塑料小鸭学具人手42只。 活动过程 一、复习6的组成 玩“碰球游戏”,出现数咔,师问:这数是几?答“6”。师:今天玩碰游戏,教师与小朋友的数合起来是6。(例如),师:我的1球碰几球?答:你的1球碰5球)教师问,小朋友可集体回答,也可小组回答,也可个别回答。 二、集体尝试活动
2、培养幼儿归雷达能力。 [活动准备]1、教师用具:6个小熊2、幼儿用具:(雪花片,吹塑圆片),作业单,铅笔人手各一份。 [活动过程]1、复习5的组成 玩碰球游戏2、教学6的组成⑴请幼儿观察小熊特征。⑵请幼儿根据小熊特征分类。 幼儿和老师一起说分合,知道两队调换合起来是6。 教师小结6的分解
人是一个能动的个体,学习是学习者主动建构的过程。社会的发展也强烈需要发展幼儿的主动性和创造性。而数学是一门抽象性、逻辑性很强的学科。在我选择的“二次分类”这个数学活动时,我是考虑到,老师们习惯于仅以幼儿认识事物是从具体到抽象这一特点为依据,只强调直观性,在活动中教师常运用教具演示,并以此为基础讲解基本的数学概念,而实际上,幼儿数学概念的形成不是通过听老师讲、看老师演示所能解决得了的,必须通过幼儿自己主动活动的过程。“图形的二次分类”我希望提供给幼儿充分的操作材料,再加以引导,一步一步深入,使幼儿真正在操作过程中去发现、归纳“图形的二次分类”的特征。
新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者。活动中应力求“形成合作式的师幼互动”,因此本活动我除了和幼儿一起准备丰富的活动材料,还挖掘此活动的活动价值,采用适宜的方法组织教学。活动中我运用了1、情景表演法:活动导入部分既要让幼儿发现问题,引出下面一系列的疑问及探索,又要通过幼儿感兴趣的方式设置悬念,因而我设计了小兔出门摔倒这一情节,并通过情景表演的方法启发幼儿思考。2、演示法:是教师通过讲解谈话把教具演示给孩子看,帮助他们获得一定的理解,本活动的演示是运用几何图形的基础上,学会区分异同。此外我还运用了观察法、谈话法等,对于这些方法的运用,我“变”以往教学的传统模式——教师说教,为以幼儿为主体,教师以启发、引导的方式,充分调动幼儿学习的积极性,并以“游戏”贯穿活动始终,让幼儿在玩中获得知识,习得经验,真正体现玩中学,学中乐。
1、设计意图:分类是根据物品的同和异,把物品集合成类的过程,也就是把相同的或具有共同特征的物品归并在一起。对小班幼儿来说分类包含两个层次。一个是求同,就是把相同的物品摆放在一起,比如西瓜和西瓜、糖果和糖果。第二个层次是分类,分类就是把有共同特征的物品放在一起。在本节课中就是在找到一模一样的礼物的基础上再把礼物分成可以吃的,可以玩的和书本三大类。求同是分类的基础,因为求同时的标准是现成的,而分类时要幼儿自己产生标准,他们会把西瓜和糖果都放到食物箱里。所以设计时先让幼儿进行求同活动,提高他们掌握标准的能力,循序渐进,再让幼儿进行分类活动。通过生动的游戏形式,让幼儿在动动、玩玩、做做的过程中,积累有关类的经验,提高幼儿对数学活动的兴趣。2、目标定位:1、让幼儿能找出相同的物品,并知道摆放在一起。2、练习将物品分类,并养成分类摆放物品的好习惯。3、让幼儿通过游戏体验相互合作、和同伴分享的快乐。
【活动目标】1、学会目测有明显大小差异的物体,懂得物体的大小是通过比较来认识的。2、通过游戏使幼儿初步体会到由大到小和由小到大之间的转变,初步发展幼儿的多向思维。3、激发幼儿探索的主动性、积极性,培养幼儿探索的兴趣。 【活动准备】1、硬纸鱼20条(有大小差别)、钓鱼竿若干、用大积木围搭成一个“池塘”。2、吹泡泡用具:装有肥皂水的塑料瓶人手一份,吸管(单孔、多孔、粗细不一)数量多于幼儿人数,气球若干。3、可变大或变小的食物若干种,如饼干、水果、青菜、木耳干等。4、照相机、大白纸和画笔,幼儿自带小时候的照片和近照。
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
2、 引导幼儿学习按标记表示的差异个数找图形。 3、 培养幼儿分析、综合和解决总是的能力。 教学准备: 1、 录音机、磁带 2、 60—70CM长的绳子若干根 3、 小鸡衣服若干件、老鹰衣服一件 4、 小鸡笼2只 5、 鸡妈妈胸饰一只 教学过程: 一、游戏导入,引起幼儿的兴趣和情绪 1、 T:看,你们穿上衣服后都变成了谁?我变成了谁?我们来玩个《老鹰抓小鸡》的游戏,好吗? 2、 介绍游戏规则,教师与幼儿玩游戏,并在游戏的过程中教师抓住四只小鸡。(放音乐与幼儿游戏)
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。