在看到成绩的同时,我们也要清醒地认识到存在的问题和不足。一是全市旅游景区业态单一,产品同质化严重、特色化挖掘不够以及运营能力不强等问题突出。比如,瓮安古邑旅游区、惠水好花红旅游区如何发挥良好效益,还需要深入研究推动。二是全市旅游业仍以观光旅游产品为主,产业链条不长,休闲度假温泉、度假酒店、旅居村寨等康养、体验产品较少,供给不足,“+旅游”这篇大文章做得不够,统筹还不到位。三是全市大多数景区仍以政府主导为主,不善于谋划和经营,产出账算的还不够,造成了一些烂尾项目、僵尸项目。四是旅游营销不够精准高效,大多还停留在传统营销推介模式,利用新媒体宣传营销还有差距,客源地、目标市场定位还不够精准,特别是在细分目标市场和客群市场上做得还不够。
⒈人员构成及务工地点分布状况 据初步普查结果表明,截止今年2月底,全县外出务工人员总数为168475人,其中:男性115345人,占68.5%,女性53130人,占31.5%。主要务工地集中在“长三角”、“珠三角”沿海发达地区和京津唐经济圈,分布在本省和其它省区仅占25%左右。 从行业分布看,建筑装修行业占38%,进企业务工占32%,商业贸易、餐饮服务及其它行业分别各占10%。其中,在民营、私企的占75%,外资企业的占20%,在国有、集体企业或出国务工者总数占5%。职业主要以简单和重复劳动为主,大部分是从事一线的普通工和辅助工。从年龄结构上看,35岁以下的占79.09%,36岁—45岁的占19.73%,46岁以上的占1.18%。从文化层次上看,小学及以下文化程度占11.25%,初中占52.6%,高中(含中专)占25.4%,大专及以上文化程度占10.75%。
⒈人员构成及务工地点分布状况 据初步普查结果表明,截止今年2月底,全县外出务工人员总数为168475人,其中:男性115345人,占68.5%,女性53130人,占31.5%。主要务工地集中在“长三角”、“珠三角”沿海发达地区和京津唐经济圈,分布在本省和其它省区仅占25%左右。 从行业分布看,建筑装修行业占38%,进企业务工占32%,商业贸易、餐饮服务及其它行业分别各占10%。其中,在民营、私企的占75%,外资企业的占20%,在国有、集体企业或出国务工者总数占5%。职业主要以简单和重复劳动为主,大部分是从事一线的普通工和辅助工。从年龄结构上看,35岁以下的占79.09%,36岁—45岁的占19.73%,46岁以上的占1.18%。从文化层次上看,小学及以下文化程度占11.25%,初中占52.6%,高中(含中专)占25.4%,大专及以上文化程度占10.75%。
1、夯实基础,完善农业生态体系。一是集中连片开展高标准农田建设,提升生产基础条件。XXX田园综合体核心区占地4500亩,完成投资7049万元,对农田进行改造治理。XXX项目投资560万元,实施高标准农田2000亩。项目建成后,可有效改善农田基础设施条件,增加村民收入。二是实施新建园区道路及配套工程。XXX田园综合体路基、路面已全部完成施工,其他农业配套设施基本完成。XXXX项目新修道路3条1210米,拓宽1条726米,新建交通桥2座、拦河坝1座,过路管涵6座,进地管涵26座,提升园区内的通达条件。水电等基础保障得到升级改造,生产配套条件明显提升。三是加快土地流转,提升农业生产规模化、产业化水平。XXXX项目流转土地3000亩,发展小红星标准化生产基地,通过加快土地流转,实现土地、劳力、资金、技术、信息等生产要素的优化配置和组合,促进产业结构调整与优化。
一、发展前景:质量优,效益高 全面建成小康社会,“短板”在“三农”。今年中央农村工作会议,明确要对标全面建成小康社会目标,提出保供给、保增收、保稳定的新要求。在新冠肺炎疫情冲击下,农业遭遇产销困难,如何推动农业转型升级,发展高效农业是重要方向。 高效农业以市场为导向,依靠科技支撑,以保障农产品供给、农民持续增收和农业可持续发展为目标,是经济、社会、生态综合效益最佳的农业。高效农业的核心要义,就是农业高质量、高效益,通过提高农业产业化、机械化、信息化水平,提高农业发展竞争力,是一二三产融合,种、养、加、销衔接,全产业链发展的现代农业新业态。发展高效农业,可以有效破解农业基础薄弱、生产规模偏小、供求矛盾突出、发展方式粗放等难题,是对传统农业的革命。
中国古代商业的发展有哪些表现?综观中国古代历史,商业在不同的历史时期有不同的表现。主要表现在:(1)商业活动的场所的变化:先主要在城市中进行,后来农村集市贸易逐渐发展。唐时加快,明清时突出,出现了专业性的市集(如丝市、叶市、猪市等),以至逐渐形成了新兴的市镇(有的更是专业性的集散市集);而不是先有农村商业,而后才有城市商业的发展。(2)交易内容的变化:商业开始时以贩运、交流地区间的土特产品,经营统治者所需要的奢侈品为主要内容,以后随着商品货币经济的发展,市场商品种类增多、行业分细,为一般人民所需要的主要农副产品以及城市手工业所生产的大小商品在整个流通界地位提高。这种情况在宋代已经显现。(3)交易媒介的变化:商品交换最原始的形态是物物交换,不存在交易的媒介。随着商品交换的内容和地域的扩大,出现了以贝壳等为代表的一般等价物。
1.归纳珠江三角洲发展基塘生产有利的地理条件。珠江三角洲地势低平,河网密布,降水充沛。北回归线从珠江三角洲的北部穿过。珠江三角洲地区发展基塘农业生产有利条件可以结合材料,归纳为三个方面:地形、气候、市场(当地和海外)。2.基塘生产将哪些产业联系起来?哪些副产品(或废弃物)被充分利用起来?这种联系对农村经济发展有什么作用?基塘生产环节将种植业(桑、蔗等)、养殖业(养蚕、养鱼)、工业(丝厂、糖厂)等几种产业紧密的联系在一起。在此环节中,塘泥、蚕沙(蚕屎)、蚕蛹、缫丝、滤泥、蔗叶等副产品被充分的回收利用。养蚕业、蔗糖加工业同塘鱼养殖业紧密结合,作为一种综合的经营,几者之间相互依存、相互促进、扬长补短,有机地循环联系起来。基本上解决了桑、蔗的肥料和蚕、鱼的饲料问题。不仅养蚕、蔗糖加工和养鱼生产稳定,而且成本也大大降低。
在采访中,记者了解到,为支持白酒产业链建设,我市相关部门持续优化营商环境,推动项目建设“加速跑”。凤翔区行政审批服务局在华山论剑酒庄项目审批中,探索“容缺受理+告知承诺+联合踏勘”管理办法,为项目开辟绿色审批通道;对西凤酒10万吨优质基酒生产及配套项目实施并联审批、一次办结。除此之外,凤翔区相关部门还组建“项目管家”服务队,为白酒产业链重点项目提供延时服务和节假日预约服务。在陇县,围绕总投资5亿元的陇州酒业万吨白酒生产线建设项目,审批部门为项目配备了“服务员”,公安部门给项目配备了“项目警官”,人社部门给项目配备了“保障员”,在“三员”呵护下,这个项目得以快速推进。一条产业链就是一个新的增长极。白酒产业链的未来方向是绿色环保、智能酿造、品质升级,不断满足消费者对高品质、健康、环保等需求。随着这条产业链的日趋完善,上下游企业逐步“链”上开花,一个极具影响力和带动力的增长极正为宝鸡经济社会高质量发展注入强劲动能。
(五)坚持实施效能提升之策,积极推进“两册”换版升级。接到厂“两册”管理提升通知后,作业区及时召开专项会议,制定提升方案,组织专人、专班,对“两册”进行升级,抽调各中心站主管干部及技师进行两册提升编写培训,各中心站根据自身运行情况进行两册初步编制。安排人员对各中心站进行两册内容帮促、完善;安排专人对两册进行更定、校对,上交厂企管法规部。6月1日-6月5日,制定“岗位大练兵、大提升”培训计划及考核机制,并对两册内容组织现场培训。二、下步工作计划(一)抓“硬件”井站提升持续巩固。始终按照厂部“两线”“五区”总体工作部署,重点围绕矿容矿貌美化、现场清洁生产、资源节约与综合利用、数字化油田建设、企业良好形象五大领域,在原有打造基础上,持续巩固提升,争创标杆。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
一脱离题海,回归高考真题。考前一周,适当做题,让自己热热身,保持做题的手感,快速进入考试状态。 二每天坚持,阅读试卷。一旦读出每道题的思路,就读下一道!用这样的方式快速准确地掌握试题信息,在没有时间大量做题的前提下,阅读试卷比做题提分更快! 三调整心态,增强信心。学会自我心理调节。要知道,高考是选拔性的考试,肯定会有人被淘汰。把自己会的答对,对的写完,就不应该再有什么遗憾。更不要盲目攀比,运用积极暗示进行心理调整,增强信心。 四坚持运动,消除焦虑。把自己精力最旺盛的时间调整到与高考相一致的时间段。考前坚持每天运动一小时,通过运动来消除焦虑。
2022.07~2022.08 XXXX医院(三甲) 轮岗实习l 医院实习,理论结合实际,更深入了解相关疾病;l 协助各科室医生完成相关医疗操作,处理医嘱;l 医生助理工作,协助医生接诊,书写住院病例;l 与科室医生进行配台手术,与患者进行相关沟通,能很好的完成对患者的后期处理及相关治疗。2021.07~2021.08 XXXX医院 见习l 医院见习,先后多个科室轮岗 ;l 了解相关科室的工作流程,学习并掌握相关技能;协助医生完成简单的治疗工作,处理医嘱。
2022.09~2022.12 XXX软件有限公司 校园代理l 结合线上线下市场调查,创办校园会员制,企划八佰拜校园行商业宣传方案;l 制作电子购物傻瓜化教程掩饰文稿发送给潜在客户并挂在网上;l 深入联系客户,多次扮演公司于同学沟通的桥梁,用诚实和责任心打动客户;l 发展会员进40人,在全国校园代理中销售排名第26名。l 参加公司培训,积极学习并了解公司所代理的相关产品功能和使用方法;l 负责公司相关产品在三门峡地区的销售工作,开拓潜在的渠道客户,完成销售经理下达的销售任务。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。