2. 引导幼儿关心周围的社会生活环境。3. 感受帮助朋友的快乐,培养幼儿关心自然界,爱护树木的情感。准备:1.环境创设:树林和一名扮演“大树妈妈”的老师。2.小鸟头饰人手一个,鸟妈妈头饰一个。3.小鸟飞音乐带,录音机。4.画纸、水彩笔人手一份。
老师们,同学们:早上好。又到讲故事的时候了,今天我们要讲“灰太狼”的故事。大家看过《喜羊羊和灰太狼》吧,那只老是想吃羊却总吃不到反而让自己受伤的灰太狼还记得吧!那么大家知道灰太狼为什么会落得今天这个可怜的甚至有点悲惨的下场吗?大家听完《灰太狼哈克学本领》这个故事就知道了!灰太狼其实有个名字,叫哈克。哈克从小就想成为一条多才多艺的狼。它拜了好多老师学艺,可是都没成功,这是为什么呢?哈克看见乌乌猫每天都能钓到好多大鱼,它也很想吃鱼,就拜乌乌猫为师学习钓鱼。哈克把渔线刚抛到水里,马上就把渔线收了起来。“不要着急啊!”乌乌猫认真地对哈克说,“要等到鱼咬钩后,渔线往下沉的时候,才能收线!”“那要等到什么时候啊!”哈克急了,于是就不学了。哈克听说瘸子鸭达克的舞步很好看,就向达克学习跳舞。哈克对着镜子,跟瘸子鸭达克学跳舞。学了一会儿,它感觉自己像一个马戏团的小丑,很不满意。
甲方:_________________ 地址:_________________ 电话:_________________ 乙方姓名:_____________ 法定监护人:___________ 性别:_________________ 出生日期:_____________ 地址:_________________ 邮编:_________________ 经过友好协商,甲乙双方就乙方委托甲方协助办理____国____大学入学申请有关事宜,达成如下协议: 一、 甲方职责 1.向乙方客观介绍____国的教育制度、院校概况、专业情况和学习费用等; 2.受乙方的委托,甲方负责承办乙方的入学申请,指导乙方办理入学申请的相关手续; 3.提供____国学校入学通知书并及时通报委托人,入学申请的进展情况; 4.指导乙方办理护照、体检、出入境等手续; 5.协助乙方联系安排抵____时的机场接机、住宿申请事宜(费用由乙方负担); 6.乙方如未获得_____国大学录取通知书,甲方负责向乙方退还应退款项(具体退款原则及规定见本协议“退款规定”部分)。 二、 乙方职责 1.乙方根据甲方要求,及时提供赴_____国学习真实的各项申办材料; 2.必须如实向甲方的咨询员反映本人和家庭情况,并提供真实的申请材料; 3.乙方负责根据本协议付费条款,按时向甲方付清所有款项。
活动目标: 1.引导幼儿初步感受散文的优美意境,学习散文中的排比句。 2.鼓励幼儿积极参与欣赏及仿编活动,指导幼儿用语言、动作表达自己的理解与感受,并与同伴分享。 活动准备: 活动前带领幼儿观察雨景;散文录音,电脑课件,屋顶、树叶、雨伞图片各两张,幼儿人手一个“小雨点”指偶。 活动过程: (一)谈话导入 师:小朋友看过下雨吗?雨是怎样从天上落下来的?小朋友喜欢下雨吗? (二)欣赏散文 1.看无声课件。 师:今天有个地方正下着雨呢,我们一起来看看小雨点跳到了哪里?小雨点在干什么? (1)幼儿看课件。 (2)教师提问:小雨点跳到了哪里?好像在干什么?老师随着幼儿发言的内容点击画面,鼓励幼儿充分讲述。
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
欣赏图片,帮助幼儿感受春天的美,初步理解诗歌内容。过渡语:小雨点,沙啦啦,唱着歌儿落到什么地方?1、欣赏图一:小雨点落在花园里。①小雨点,沙啦啦,落在花园里,花儿怎么样了?②花儿张开大嘴巴,会说些什么呢?以诗歌内容小结:小雨点,沙啦啦,落在花园里,花儿张开大嘴巴。③师当小雨点,幼儿当花,边表演边学念诗歌第一段若干遍。2、欣赏图二:小雨点落在池塘里。①小雨点,沙啦啦,落在什么地方?池塘里有什么?他们在干什么?(摇尾巴)②它们的心情怎么样?你从哪里看出来?以诗歌内容小结:小雨点,沙啦啦,小雨点落在池塘里,鱼儿摇摇小尾巴。③师当小雨点,幼儿当鱼,边表演边学念诗歌第二段若干遍。
3-4岁是幼儿语言发展的关键时期,对于喜爱的事物充满了表达和欲望,幼儿可以通过描述性词汇来对喜爱的事物进行表达。饼干是与幼儿生活密切相关的东西,并且幼儿对于吃的东西永远充满着兴趣。所以我选择了这样一个内容进行讲述活动。活动的目标是贯穿于一个教育活动的始终,对活动起着主导作用。我将目标分为以下三点:1、在集体场合自然大方地讲话。2、尝试用较完整的语言进行讲述饼干的样子、颜色、形状等。3、能通过活动丰富词汇,比如“圆圆的、甜甜的、香香的”等描述性词语。本次活动的重点是:指导幼儿通过活动讲出一些描述性词汇。因为小班幼儿的语言正在发展阶段,所以要教师来引导幼儿来表达,这也是活动的难点。1、若干的形状、大小、味道不一样的小饼干。2、活动所需要的盘子、遮挡物(布)。
在主题活动“故事啊,故事”中,我们从陪伴幼儿聆听故事开始,接着寻找故事,探究故事世界里各种好听好玩的事情。故事是幼儿最喜欢的一种文学形式,故事通过典型的人物形象、曲折的情节,生动、优美的语言,吸引着幼儿,使他们从中受到感染和教育,懂得什么是真善美,什么是假恶丑,从而培养爱憎分明的情感,并把学到的好思想见诸于行动。《小红帽》是一篇形象鲜明突出,语言生动浅显而富有意义的故事。它的故事情节性教强,能为幼儿提供一个较大的想象空间。在这次的活动中,我让幼儿在理解故事情节的基础上再来学习这首融于故事情景的儿歌,幼儿一听就明白,容易理解,不需要教师过多的解释,这样孩子在接受它时可以不用去记忆就能背诵下来。孩子从中获得了成就感,学习自然有了积极性。这样的学习形式易被低幼儿童所接受,让幼儿在欣赏、理解、体会儿歌的过程中,发展了幼儿的想象力和创造思维能力。
活动准备:1、活动前已开展半日活动《太阳》,感知在温暖的阳光下的感觉。2、幼儿在地毯上围坐成半圆形。2、画有红灯笼、萝卜、红气球、太阳的画面四幅(旁边贴相应的字宝宝),布置在小栅栏上。3、小兔木偶一个。活动过程: 1、出示小木偶,引发幼儿兴趣。师:宝宝们,这是谁呀?(出示字卡“小兔子”)对,我是小兔子,今天我要去找——(出示字卡“太阳”)什么呀?你们真聪明,我要去找太阳,如果我找错了,你可要告诉我呀。 2、教师边讲故事边木偶表演《小兔找太阳》,根据故事情节的展开逐步拉出画面,让幼儿与故事互动,学习语言,理解作品情节和其中的人物形象。 师:小兔子听说是红红的、圆圆的,就去找太阳。它在屋子里提着两盏红红的、圆圆的红灯笼,高兴地说:我找到了找到了,这就是太阳 师:哎,宝宝们:这是什么呀?那我们快点告诉小兔子,(引导幼儿学说:不,这是两盏红灯笼)这时妈妈说:“不,这是两盏红灯笼,太阳在屋子外面呢!”小兔子来到屋子外面……,以下三个画面用上面同样的方法让幼儿与故事互动,帮助幼儿理解故事,学说故事中的对话。
2、培养幼儿观察、设计与制作的能力。 活动材料: 铅化纸(各种开关的标志底板)即时贴 皱纸 纽扣 硬纸板、绒线、蜡笔、手工纸、固体胶、剪刀、记号笔、双面贴活动过程:1、计论导入: (1)、有客人到我们幼儿园如果他不知道,有什么办法让客人一看就知道? (2)、讨论:你看到过有些什么标志?2、幼儿创作:(1)、幼儿自由选择材料 你今天准备为什么地方设计一个什么样的标志?用什么材料?(2)、幼儿创作 老师指导:A.幼儿创作,老师巡回指导。 B.提醒幼儿用不同的材料制作标志。 C.启发幼儿大胆想象,表扬有创意的孩子。
目标:1.初步了解故事主要内容,能对故事产生浓厚兴趣。2.养成认真观看表演的好习惯。 准备:1.英语教师、带班教师排练故事表演,并制作相应的服饰、道具。2.根据故事情节选择合适的材料和场景。 过程:1.两位教师分别运用英语、汉语表演故事《小兔乖乖》,引起幼儿兴趣。2.每次用音乐游戏“大灰狼打败了”结束故事表演,也可邀请幼儿一起随乐曲自由地用拍手、跺脚、举手等动作表达胜利的喜悦。 活动二 小白兔打败大灰狼 目标:1.进一步熟悉故事,理解主题。2.通过讨论、交流,体验相互学习、合作学习的快乐。 准备: 《小兔乖乖》VCD碟片或多媒体软盘,VCD机或电脑等。 过程:1.让幼儿观看故事《小兔乖乖》,提问:小白兔是怎样打败大灰狼的?2.让幼儿自由讨论,并自愿或推荐他人回答问题。3.教师小结:兔妈妈的三个孩子遇到危险时,动脑筋,想办法,终于打败了大灰狼,它们真是聪明能干的乖宝宝。
(2) 中国文人的悲秋情结。3.《荷塘月色》中,作者为什么要离开家来到荷塘散步?4. 思考:作者的心里为何“颇不宁静?”(教师补充:写作背景)5. 出门散步后,作者的心情发生变化了吗? 有怎样的变化?6.思考讨论:为什么作者说“我”与“地坛”间有着宿命般的缘分,二者有何相似之处?(阅读1-5段)7.思考:作者从他同病相怜的“朋友“身上理解了怎样的”意图“?三、课堂总结李白说:“天地者,万物之逆旅也。”人生,如同一场旅行,在人生的旅途中,时而高山,时而峡谷,时而坦途,时而歧路。我们或放歌,或悲哭,然而,大自然始终以其不变的姿势深情地看着我们,而我们,也应该学会在与自然的深情对望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁达夫,荷塘月色之于朱自清,地坛之于史铁生,他们从中或得到心灵的慰藉、精神的寄托,或得到生存的智慧与勇气,最终完成精神的超脱。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。