1. 小明的脚长23.6厘米,鞋号应是 号。2.小亮的脚长25.1厘米,鞋号应是 号。3.小王选了25号鞋,那么他的脚长约是大于等于 厘米且小于 厘米。小结:刚才同学们都体会到了分组编码使原来繁多,无叙的数据简化、有序。因此分组、编码是整理数据的一种重要的方法,在工商业、科研等活动中有广泛的应用(四)反馈练习课内练习以下是某校七年级南,女生各10名右眼裸视的检测结果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)这组数据是用什么方法获得的?(2)学生右眼视力跟性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?(五). 归纳小结,体味数学快乐通过本节课的学习,你有那些收获?(课堂小结交给学生)数据收集的方法:直接观察、测量、调查、实验、查阅文献资料、使用互连网等。整理数据的方法:分类、排序、分组编码等。(学生可能还会指出鞋码和脚长之间的关系等)
解析:本题是要求两个未知数,即3和4的权.所以应把平均数与方程组综合起来,利用平均数的定义来列方程,组成方程组求解.解:设投进3个球的有x人,投进4个球的有y人,由题意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投进3个球的有9人,投进4个球的有3人.方法总结:利用平均数的公式解题时,要弄清数据及相应的权,避免出错.三、板书设计平均数算术平均数:x=1n(x1+x2+…+xn)加权平均数:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通过探索算术平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和增加学好数学的信心.
本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
(1) 这28天中属于“重度染污”、“中度污染”、“轻度污染”、“良”和“优”的天数各有几天?出现的频率各是多少?请用一张统计表来表示;(3) 从你作的统计图表中,你得到哪些结论?说说你的理由.(三)课堂小结:本节课学习了用统计来直观来表示数据,并从统计图中发现数据间的联系。整理数据——制统计表1、从资料给出的许多数据中选取相关数据进行整理;2、标目分成横、纵两种(允许不同分法);3、把数据放入相应位置。为了更清晰地用统计表展示与描绘数据,统计表必须有规范的结构:标题(统计表的名称)标目(如“国家”、“届数”…)数据、必要的说明(数据的单位、制表日期等)折线统计图的步骤:(1)写出统计图名称;(2)画出横、纵两条互相垂直的数轴(有时不画箭头),分别表示两个标目的数据;(3)根据横、纵各个方向上的各对对应的标目数据画点;(4)用线段把每相邻两点连接起来。
(五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成: 1、课本23页练习1、2 2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论: 3、数轴上的点P与表示有理数3的点A距离是2, (1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是多少? (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结: 1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数? 2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
接下来学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义,并进一步掌握了实数的相反数、倒数、绝对值等知识。学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。并探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。然后通过相关练习,检测学生对实数相关知识的掌握情况。最后学生交流,互相补充,完成本节知识的梳理。布置作业:所布置作业都是紧紧围绕着“实数”的概念及运用。设计选作题是为了给学有余力的学生留出自由发展的空间。五、关于板书设计我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆。
1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识. 教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.
方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:根据实际问题列代数式用代数式表示下列各式:(1)王明同学买2本练习册花了n元,那么买m本练习册要花多少元?(2)正方体的棱长为a,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n元,得出买1本练习册花n2元,再根据买了m本练习册,即可列出算式.(2)根据正方体的棱长为a和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n元,∴买1本练习册花n2元,∴买m本练习册要花12mn元;(2)∵正方体的棱长为a,∴它的表面积是6a2;它的体积是a3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是数轴?怎样画数轴。(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?5、随堂练习:(1)下列说法正确的是( ) A、 数轴上的点只能表示有理数B、 一个数只能用数轴上的一个点表示C、 在1和3之间只有2D、 在数轴上离原点2个单位长度的点表示的数是2 (2)语句:①-5是相反数?②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是( )
将有理数-2,+1,0,-212,314在数轴上表示出来,并用“<”号连接各数.解析:利用数轴上的点来表示相应的数,再利用它们对应点的位置来判断各数的大小.解:如图:由数轴可知-212<-2<0<+1<314.方法总结:一般地,数轴上多个数的大小比较,可利用“数轴上两个点表示的数,右边的总比左边的大”这一性质进行比较.探究点四:点在数轴上的移动问题点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.-6C.2或-6 D.以上答案都不对解析:∵点A为数轴上表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为2.故选C.方法总结:点A在数轴上移动要注意分两种情况:一个向左,一个向右,不要漏掉其中的一种情况.
探究点三:函数的图象洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()解析:∵洗衣机工作前洗衣机内无水,∴A,B两选项不正确,淘汰;又∵洗衣机最后排完水,∴D选项不正确,淘汰,所以选项C正确,故选C.方法总结:本题考查了对函数图象的理解能力,看函数图象要理解两个变量的变化情况.三、板书设计函数定义:自变量、因变量、常量函数的关系式三种表示方法函数值函数的图象在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣,并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动.在活动中归纳、概括出函数的概念,并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.
解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1).方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x满足x2=17,则x精确到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正数x各位上的数字的方法:(1)估计x的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x的百分位、千分位、…上的数,从而确定x的值.
然后能通过图象找出变量的对应关系在图象上的体现。3、做一做:课本P154第1小题,学生在课本上填表,让学生通过填表,体会变量之间的相依关系。4、师生小结:和学生一起对刚才的三个例子进行总结,启发学生思考三个例子的相同点和不同点,如表现形式不同,有图象、表格、代数表达式。相同的有它们都是两个变量,确定其中一个变量后就能相应确定另一个变量的值。从而使学生的认识上升一个高度,并掌握函数的概念5、课堂练习:完成课本P155随堂练习。通过本练习的完成巩固概念并会用概念去判断两个变量间的关系是否可看做函数。6、新课巩固:以填空形式对本堂课进行小结,使学生对函数的概念及应用有一定记忆。并通过对最后问题的思考使学生意识到数学来自生活,并能应用于生活。
(一)、情境导入通过播放笑笑和淘气在文具店购买文具活动的视频片段,唤起学生已有的知识和经验,使学生想到“买东西要使用人民币”。又因为二年级孩子年龄较小,社会经验不足,上市场、超市购物的机会也少,对人民币只是初步的认识,对于要用到钱才能买到东西这一朴素的等价交换的原则只有初步的意识。所以借此机会激发学生想不想和笑笑、淘气一起到文具店里去购买文具呢?从而引出课题:买文具。(二)、认识小面额人民币学生在生活中经常看到人民币,有时还使用人民币,因此我首先让学生互相交流:你知道有哪些面值的人民币?根据学生的回答,老师有序地进行板书:1角、2角、5甬1元、2元、5元10元、20元、50元100元在这一环节中我仅作为引导者,引导学生相互交流,在师生互动中完成对已有知识经验的归纳与延伸,通过小组合作,互相交流,让全体学生参与学习过程,在学习过程中有意识培养学生细心观察、仔细倾听、善于总结的良好习惯。
一、激趣引新1、创设逛商场的情境。师:同学们,你们逛过商场吗?今天笑笑就来到商场买衣服(引出课题:买衣服),我们一起去看看吧!2、看图获取数学信息并交流。师:(出示课件:教材72页主题情境图)现在我们已经来到商场里了,同学们从图中知道了些什么呢?生交流:我看到商场里有上衣、裤子、裙子和围巾;我还知道了他们各自的价钱。一件上衣的价钱是59元,一条裤子的价钱是41元,一条裙子的价钱是36元,一条围巾的价钱是31元;我还知道了明明的笑笑拿了100元钱想买一件上衣和一条裙子。师:同学们观察得可真仔细呀!昨天我们已经认识了一些人民币,今天笑笑来买衣服,那么你们觉得能不能用我们学过的那些人民币来付钱呢?(生讨论)生讨论,交流意见:可是可以,但会很麻烦。因为衣服店的东西比较贵,我们学过的人民币最多才5元,算起来就很麻烦。师:同学们的想法很正确,因此今天我们就来学习一些面额较大的人民币。
大家好,今天我说课的内容是《分物游戏》。下面我将从3个方面来阐述我对本节课的理解与设计。【说教材】《分物游戏》是北师大版小学数学二年级上册第七单元的内容,属于数与代数领域的有关内容。本节课是在学生初步了解乘法的意义,会用2-5的乘法口诀口算表内乘法的基础上进行教学的。且为学生今后认识除法和分数打下扎实的基础。教材提出了3个问题,引导学生一步步加深对“平均分”的理解,初步建立“平均分”的概念。问题1:分桃子:让学生感受分法的多样性,同时感受到“每份一样多”的方法最公平;问题2:分萝卜:让学生体会平均分分法的多样性与结果的一致性,体会平均分的意义。问题3:分骨头:体会平均分的过程并尝试用画图的方法表示平均分的过程与结果。本节课以实际操作为主要教学方式,让学生在操作中逐渐理解“平均分”的意义。
1.故事情境法;2.激励法;3.多媒体辅助法;4.开放式教学法“教是为了不教”,可见教学贵在教给学生学习方法。教学中让学生充分地参与探究,动手实践,讨论交流,获取新知,领悟方法,形成解决问题的能力。五、授课过程为了实现以上教学目标,根据新课程倡导的理念和学生的年龄特征,本节课我以“笑笑过生日”这个故事情境贯穿课的始末,引导学生在“实践”中学习、在“实践”中体验,设计了如下教学流程:1、创设情境、激发兴趣:俗话说:“良好的开端是成功的一半”,而兴趣是学习入门的向导,是激发学生求知欲,吸引学生乐学的内在动力。本节课的导入部分,我创设了这样一个情境,笑笑过生日,请来了许多客人,准备了一袋苹果来招待客人,想让小朋友帮助笑笑来分一分。同学们,现在就请你们用手中的12根小棒代替苹果,动手分一分,看一看这12个苹果你怎么分?这节课,我们就来学习分苹果。(板书:分苹果)
一、教材分析:1、内容、地位、作用《买球》是北师大版小学数学第三册第七单元第76—77页的内容,本课知识是在已经掌握了2—7乘法口诀的基础上来学习的。学生已经有了编制口诀的基础,教材在口诀的引入和解决问题时设计了买足球、买蓝球的情境,让学生结合解决实际问题的过程,得出8、9的乘法口诀。在8和9的乘法口诀中,没学过的口诀只有3句,教材创设的情境中的两个问题都是针对还没有学过的口诀提出的。这部分知识是为学生以后学习乘法、除法打基础的。2、教学目标:根据数学新课程标准及本课教材的特点,确定教学目标如下:(1)让学生经历编制8,9乘法口诀的过程,在探索中掌握8,9的乘法口诀。(2)能正确运用8,9的乘法口诀解决实际问题。(3)培养学生的估算意识、合作意识,体验算法的多样化和学习数学的乐趣。3、教学重点、难点重点:掌握8、9的乘法口诀。难点:发现8、9乘法口诀的规律,探索适合自己记忆的方法。
1.认知目标:(1)结合学生的生活背景,在亲身体验中充分认识估算在生活中的意义。(2)创设情景,让学生合作探究,进而发现,总结和应用除法估算的方法。2.能力目标:(1)运用除法估算解决实际问题的能力。(2)培养学生观察比较,抽象概括的能力,并渗透联想类推的数学思考方法。(3)在培养学生估算能力的过程中发展学生思维的灵活性和创造性。3.情感目标:培养他们勇于探索尝试,能主动地发现创造,以及自主、自信、团结协作的优良品质。教学重点:使学生掌握除数是两位数的除法估算的方法。教学难点:根据题目的具体情况及运算的方便程度,灵活地进行除法估算。二、教法和学法:创设情景激发兴趣鼓励探索引导发现学生的“学”就能:敢于尝试自主探究合作交流共同发展一改教师提出问题,学生解决问题这种应答式的教学方式和学生简单记忆、机械重复的学习方式,而是充分让学生自己在生活情景体验中主动质疑、探索,互相交流,共同发展。