3、开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。(二)小组内游戏,探索结论。通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。(三)理论验证通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。三、师生共同小结本次活动1、通过本次活动,你有什么新的收获?2、师生总结:本次活动通过猜想、实验、验证等过程,让同学们在问题情境中自主探索,解决问题,既发展了同学们的动手实践能力,又充分调动了同学们的学习兴趣。
(二) 呈现新课 (Presentation)1、教师出示学过的缩略语PRCUKCANUSA让孩子读一读,然后拿出相应的卡片贴在黑板上请掌握较好的学生带着同学们读一读缩略语2、出示课文中的缩略语,让孩子们自己试着读一读,然后试着说说缩略语的含义3、听录音,跟读。小组说说4、让孩子们介绍自己收集的生活中的缩略语教师给以适当的扩充:CCTVWTOUFO等5、教师分别出示大小写Hh,让孩子想想大小写的字母分别想什么,用语言描述或是用动作表示。6、Let’s chant听录音,边听边打节奏听录音,边听边出示相应的字母听录音,边听边试着说歌谣孩子们带上自己的头饰,在小组中边演边说各小组展示(三)趣味操练(Practice)1、listen and order the cards让孩子说字母,按照听到的顺序排列字母2、listen and guess教师拼一拼缩略语,孩子快速说出词小组游戏(四) 扩展性活动(Add-activities)纸牌游戏两个孩子分别有一套学过的字母卡,按顺序出卡片,看谁能最先组成一个学过的缩略语。【板书设计】
4 课堂评价 (Assessment) (1)做活动手册本单元第3、4、5 部分的练习。练习3是检测学生的词汇掌握情况。教师可以让学生组成两人组进行看词快说的比赛,说对一个词涂一朵小花,比谁的花多。练习4是让学生看词涂色,说说两种颜色的结合会变成什么颜色,并将第3种颜色涂在圈中。教师可以给学生做一个示范,然后再让学生动手实践。此练习是机动性练习,教师可根据时间分配情况灵活安排。练习5 是让学生将句子和相对应的图连线,教师可以先让学生看图,猜图上人说的话,然后再连线。此练习是检测学生对句子的整体认读能力,不需要学生认识句子中的每个单词。练习后,根据学生情况进行简单小结。给学生适当的奖励。(2)让学生自我评价半学期的英语学习情况,可在第37页上做标记,看看自己能达到什么程度。对于评价结果不太理想的学生,教师要及时鼓励,教育学生不能灰心放弃,针对这部分学生具体的情况在课后进行进一步交流。
主题目标: 能关注周围环境中的事物,初步了解并体验人与人、人与整个环境和谐相处的快乐感觉;能在成人帮助下逐步形成与他人共处的良好态度;学习并尝试与人交往的方式,促进社会交往能力的发展。 主题的开展: 本月以“我的朋友”为主题,围绕“朋友都有谁、快快乐乐来玩耍、友好相处是朋友、”三个方面的内容展开活动,环境方面突出的是我们有效的利用家长资源,带动幼儿及教师家长的兴趣。 俗话说:“有朋自远方来”孩子年龄随小,但他们也在逐渐与社会接轨,心中都有自己的好朋友,比如有的幼儿说“我爸爸是我的好朋友”“我班xxx 是我的好朋友” “xx班的xxx是我的好朋友”,为此我们组织幼儿完成好朋友画像的活动。目的是通过幼儿讲述,不仅提高幼儿口语表达能力。而且进一步增进好朋友之间的情感。
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系数a、b的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础
1.通过预习指导,使学生借助课文的注释、工具书和参考资料了解时代背景、作者简况及各段大意,疏通文句。 2.讲授课文,指出作者政治主张的历史局限时,不必在什么是秦二世而亡的真正原因上旁征博引,同时对文中涉及的历史人物及史实,也不要过多介绍。可在课外指导学生读点通史或历史故事(如《东周列国志》,虽是小说,但基本事件多见诸其书)。
黄自出生于书香门第,其父亲是当时的参议员,母亲是当地女校的创办人。父母都是文化造诣和品德修养极高的人,在如此的家庭和环境下成长起来的黄自,从小便受到良好的教育,除了对音乐表现出超于常人的喜爱外,在父母耳濡目染的熏陶和自身兴趣的驱使下,黄自还其对中国民族博大精深的传统文化兴趣浓厚,尤其对古诗词的研究颇有造诣。1916年,16岁的黄自进入清华学校学习,这是他接触西方音乐的开始,之后他又留学美国学习作曲,为当时贫瘠的中国作曲研究带回了西方系统的作曲理论和技法,成为当时中国作曲界开天辟地的领军人物。深厚的民族文化底蕴加之西方浪漫气息感染,使得黄自的艺术歌曲既有高贵典雅的气质,又不失民族内涵和情韵。《玫瑰三愿》运用拟人的手法,以诗歌为词,借助欧洲艺术歌曲的创作手法,通过景物的伤怀与失落来表现人们对幸福生活和对美好未来的渴望。体现了“天人合一”的中国传统音乐美学特征。
教学过程:一、导入:讲音乐故事。1、问:同学们,你们知道古代有关知音的故事吗?2、请学生讲故事,教师补充。(如果学生不了解,由教师讲故事。)3、问:同学们,听了知音的故事你有什么感想?让学生谈谈自己的感想。学生的答案可能涉及到朋友间的友情,这为下面学唱歌曲《阳关三叠》做了铺垫。二、欣赏埙曲《阳关三叠》。1、介绍歌曲背景。2、让学生背诵《送元二使安西》,体会歌词内涵。这是唐代非常著名的一首差别诗,当时被谱曲传唱,称为"阳关三叠"。前两句,点明了送客的时间和地点。初春的早晨,一场细雨使尘埃落定,空气变得湿润清凉;从渭城的客舍放眼看去,到处是青青的柳色,一片生机盎然。诗中柳色的"柳"与留恋的"留"谐音,更表达出诗人对好友元二的依依惜别之情。后两句写在送别的酒席上,诗人劝他多饮几杯,因为从渭城西行出了阳关,再不会遇到熟悉的朋友了,何况此行的目的地,是比阳关更遥远的安西呢?这两句,字面上似乎只是劝酒,实际上却是衷心地祝愿着好友,在那遥远而陌生的地方一切平安。诗中把深沉的情感融入平淡的话语中,更增添了感人的力量,成为千古传诵的名句。3、初听感受音乐,请学生回答全曲意境。
教学过程:一、导入新课。1、学生听音乐进教室。2、师生音乐问好。3、师:(多媒体出示画面)请大家认真观察这幅画面,看看这幅图表达的是什么情形?生答。师:如果要你为这幅图画配上一首古诗,你会选择哪一首?(学生讨论回答,例如:“劝君更进一杯酒,西出阳关无故人。”或“海内存知己,天涯若比邻。”或“莫愁前路无知己,天下谁人不识君。”)师:同学们积累的古诗词真不少!我们常说诗与歌是不分割的,假如现在要为刚才这幅画面配乐,你会选择什么样情绪的曲子为其配乐。(学生想、答。)师:请欣赏下面两首乐曲,感受其乐曲情绪,并选择一首为其配乐。(播放《阳关三叠》《春游》)在此基础上导入新课。二、学习新课。1、刚才我们已经初步欣赏了《阳关三叠》,这次请同学们随着音乐朗诵诗歌,体验诗中之情。2、师:这节课我们就一起来学习《阳关三叠》这首歌曲,看到题目,你有什么疑问吗?(师介绍“阳关”。至于“三叠”则留下悬念,让学生在学习的过程中自己去思考、解答。)3、学唱《阳关三叠》。A、老师范唱《阳关三叠》。B、师教唱《阳关三叠》主旋律。师:这首歌曲有个特点,请大家看旋律,发现什么了吗?(生答)对,不唱的旋律部分加了括号,这叫间奏。间奏是歌曲不可缺少的部分。注重附点八分音符和附点四分音符的时值,并注意解决难点“遄行、遄行”的八度大跳和切分音节奏。
教学过程:一、导入新课。1、师:你们有没有想过,如果你和好友分别,你会以什么样的方式寄托你的思念呢?(通信、发邮件、打电话、点歌等。)2、师:你知道有哪些表达友谊的歌曲呢?(《友谊地久天长》音频)。二、情感体验。1、师:你们说得很好。其实古代也有很多表现友谊的音乐作品。今天,我们一同来欣赏一首描写友谊的古曲,请你听后思考歌曲表达了什么样的情感?(《阳关三叠》音频)。2、师:同学们,谁能告诉我歌曲表达了怎样的情感?三、诵读歌词。1、讲述歌词的来源。师:这段歌词的前一部分实际上是来自一首唐诗,你们知道这首唐诗是谁的什么作品吗?师:这位同学对学过的知识掌握得很扎实。这首诗在语文课上学过,是唐代诗人王维的名篇《送元二使安西》。唐朝时,为诗配乐进行演唱十分盛行,很多古诗都被合乐而唱,《阳关三叠》也是其中之一。原诗描绘了怎样的情节呢?(《阳关三叠》动画)。2、讨论“三叠”。师:我想再问一问同学们,你认为《阳关三叠》名字中的“三叠”是什么意思呢?请大家进行讨论。(学生讨论,允许各抒己见。)师:同学们都很有想法。原曲分成三大段,由于将一个曲调变化叠唱了三遍,故名三叠。教材中选用的是一部分,也就是其中的一叠。阳关是一个地名,所以歌曲叫《阳关三叠》,曲中还有一个地名——“渭城”,所以歌曲又叫《渭城曲》《阳关曲》。
这是作曲家张千一创作的一首歌曲。以明朗高亢而富有藏族风格的旋律,热情地歌颂了美丽庄严的青藏高原,表达了对祖国锦绣山川的眷恋、热爱之情。全曲为羽调式;节拍以四四拍子为主,间插以四二、四三拍子,引子为散板;曲式结构为有引子、前奏的二段体。引子开始,由人声合唱出一个明朗、高亢、山歌风的衬腔,把人们带入到辽阔的青藏高原的意境之中。接着,由器乐演奏深化了这一音乐主题。A段由起承转合的四个乐句构成。第一乐句作为全曲音乐主题的集中体现,具有秀美、明亮、亲切的特征;第二乐句继续承接着这一特征,切分节奏的运用使之更具活力;第三乐句作为一个转折,主要在前半句的音区和旋律音调上发生了变化,较低的音区和较为低回委婉的旋律,使感情表达更显真挚;第四乐句开头出现的后半拍起唱的节奏,使之既富有变化,又富有动力,后半乐句的旋律与第二乐句的结尾相同,使之具有“合”部的特征。
(一)学生随《乡下的阳光》进教室,师生问好。(二)聆听《黄土高坡》、《洞庭鱼米乡》。1、引入:我们生活在江南,你有没有在电影或电视中看到我国黄土高原?出示地图,找一找黄土高坡的位置。(在我国西北)2、在《黄土高坡》背景音乐下,展示CAL课件中的黄土高原的风土人情的图片:(1)漫漫黄土,低矮的窑洞。(2)沙尘漫漫飞舞。(3)人们在劳动。3、师:是啊,虽然黄土高原自然条件恶劣,但世代居住在这里的人们依然热爱他们的家乡,热爱他们的这一片土地,让我们听听他们的歌《黄土高坡》。设问:这首歌曲给你什么感受?4、刚才我们到了黄土高坡,现在我们一起去有“鱼米之乡”的洞庭湖吧。一起在地图上找一找洞庭湖的位置。(在我国中南)(课件播放洞庭湖区秀丽风景和人们张网捕鱼的图片。(同时播放《洞庭鱼米乡》背景音乐。)
2. 钢琴的构造 钢琴是西洋古典音乐中的一种键盘乐器,由88个琴键(52个白36个黑)和金属弦音板组成。 调音钉(Tuning Pins)是一些能够用特制扳手扭动旋转的钉状螺栓。它的旋床是有锁口的特制高碳钢,因而琴弦能牢固地绕在弦轴钉上,致使音准在琴弦高强度拉力作用下能长期保持并稳定下来。 琴槌(Hammer)外包着高品质的毛毡或绒布,由于这层“皮肤”多是羊毛造的,因而又称羊毛槌。它本身连着琴键,当琴键被按下时,琴槌便会打落琴弦上并借着琴弦的振动使钢琴发出声音。因此,它的作用是用来敲击被调音钉紧扣着的琴弦。
歌剧的故事情节是:守林员马克斯与护林官的女儿阿加特相爱。按传统规矩,马克斯必须在射击比赛中获胜,他才能继承护林官的职位并获准与阿加特成婚。在第一天的比赛中,马克斯遭遇失败,他为此而忧心忡忡。猎人卡斯帕尔早已把灵魂出卖给魔鬼。为了赎回自己的灵魂,他诱使马克斯去与魔鬼以灵魂交换百发百中的 魔弹。魔鬼给了马克斯七发魔弹,并言明第七发子弹打中的猎物归魔鬼所有。第二天比赛时,马克斯六发六中。王子命马克斯用最后一发子弹射击一只白鸽。马克斯 举枪之际,阿加特急叫“不要开枪”,因为白鸽是自己的化身。但枪声已响,阿加特应声昏倒,而中弹落地的却是暗中窥探的卡斯帕尔。王子非常恼怒,想要惩罚马 克斯。这时,隐居在林中的一位老人出来为马克斯求情,善良的马克斯终于和阿加特结为伴侣。韦伯(1786—1826) 德国作曲家、钢琴演奏家、指挥家、音乐评论家。10岁学习演奏钢琴,以后又学习作曲,14岁时已写有不少作品。 1813年以后,先后任布拉格歌剧院和德累斯顿交响乐团常任指挥,成就卓着。其代表作品《自由射手》被认为是具有浪漫主义特征的德国民族歌剧的诞生。除了 《自由射手》外,歌剧《欧丽安特》、《奥伯龙》也有较大影响。在钢琴作品中,《邀舞》颇为着名。