合探2 与同伴合作,两个人分别画△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此时,∠C与∠C′相等吗?三边的比 相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试.四、导入定理判定 定理1:两角分别相等的两个三角形相似.这个定理的 出 现为判定两三角形相似增加了一条新的途径.例:如图,D ,E分别是△ABC的边AB,AC上的点,DE∥BC,AB= 7,AD=5,DE=10,求B C的长。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(两角分别相等的两 个三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、学生练习:1. 讨论随堂练 习第1题有一个锐角相等的两个直角三角形是否相似?为什么?2.自己独立完成随堂练习第2题六、小结本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理.七、作业:
(一)导入新课三角形全等的判定中AA S 和ASA对应于相似三 角形的判定的判定定理1,SAS对应于相似三 角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做画△ABC与△A′B′C′,使 、 和 都等 于给定的值k.(1)设法比较∠A与∠A′的大小;(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.定理3:三边:成比例的两个三 角形相似.(三)例题学习例:如图,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度数.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、巩固练习四、小结本节学 习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
(三)、巩固反馈师:同学们的表现真的令我出乎意料,你们太聪明了,今天我就带大家去数学王国去参观,敢去吗?如果你们能闯关成功就可以免费进入王国的游戏宫,有信心吗?(激励学生,让同学们很快进入巩固练习这个环节中来)第一关:逛同学恩喜爱的食品店(这一关的设计采用抢答的方式进行,更进一步激发学生的学习兴趣,而且巩固了本课重点——计算规律。)第二关:我们来到了你们的妈妈喜欢服装店(这一关先让学生独立尝试,并抽生板演,全班订正,注意强调答语的写法。)第三关:现在我们来到了养鸡场。(这一关仍然采用抢答的方式进行,这道题目主要考察同学们对第二条规律的掌握情况)第四关:进入数学王国继续玩抢答游戏和猜一猜活动(这个环节让学生体会到学习的乐趣)
【设计意图:让学生在操作、探索的基础上,组内交流想法,再在班内交流汇报,让学生的语言得到相互交流、碰撞,从而不断激发学生的思维火花。】师:你能把这些摆法用算式写出来吗?(学生独立写出算式并汇报)依学生汇报板书:1×12=122×6=1212×1=126×2=123×4=124×3=12师:请同学们观察一下,哪两道算式的因数一样?学生观察算式,找出因数一样的算式。师:那么,这6个算式最少能用几种算式表示出来?引导学生说出能用3种方法表示,这三种方法是:1×12=122×6=123×4=12,并指明算式一样时选择其中一种说出来。板书:12=1×12=2×6=3×4师:同学们观察一下,12的因数有哪几个?(学生说出12的因数有:1、12、2、6、3、4。)师:拼长方形与找因数有什么关系呢?(指名学生说一说)师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢?(学生思考片刻后汇报,可以组内交流。)引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
第一:说教材。“质数和合数”是九年义务教育小学数学五年级(上)第三单元的内容,在教材第39~40页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求最大公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。第二:说教法:根据新课标的精神和学生实际,我将本节课教学目标定为:1)找因数填表格经历探索质数与合数的过程,理解质数与合数的意义;2)能正确判断一个数是质数或合数;3)在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;4)、在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。第三:说教学重难点重点:理解质数与合数的意义。难点:能正确判断一个数是质数还是合数,体会数学学习的方法。教学准备:课件教学安排:两课时。
本活动让幼儿对实验中发生的现象产生兴趣,在实验中让幼儿反复玩,使幼儿在操作;探索的基础上获得经验,玻璃杯中没有空气,外面的空气就会把水压入杯中卡纸就被吸住,水不会倒出来。同时我在这课添加了用杯子去盖点燃的蜡烛,一下蜡烛就灭了。空气可以支持燃烧。这样吸引幼儿的注意,目的是通过丰富多彩的活动,为幼儿建立一个探索、尝试与交流的平台。,幼儿容易理解。在活动中我运用了启发提问法,观察发现法,引导发现法,实验操作法。幼儿通过猜谜语——寻找空气——试验操作的教学环节,让抽象的自然想象变得具体化了,课堂气氛很活跃,突出了活动的重难点,通过科学探索活动,丰富幼儿的生活经验,利用简单的科学实验使幼儿感知空气的存在,也是这次活动的亮点,让幼儿理解我们的生活离不开空气。
根据中班幼儿的年龄特点,他们对数字非常感兴趣,对周围事物充满好奇心。而且,数字的概念是抽象的,对于幼儿来说,数字的认识应强调多感官参与。因此,我选择了这个活动,主要是让幼儿能通过观察寻找、动手操作的过程中积极思考,以及灵活运用周围环境中的数字让幼儿在玩中学,促进幼儿对周围生活中的数字与生活密切相连。根据幼儿的认知理解水平,我认为本次活动的重点与难点应归结为:在活动中理解数字在不同的物体的用处,同时对周围生活中数字感兴趣。
幼儿在生活中,经常能接触到各种各样的图形,而且会询问这是什么图形,注重幼儿的兴趣和终身教育是我活动的两大特色,幼儿园是现代幼儿生活学习最为熟悉的环境之一。活动开始我就让幼儿观察我的挂图,挂图中有不同颜色的不同图形,由不同图形拼成的一幅画,是为了提高幼儿的感知能力,了解各种图形分别由什么特点。活动中教师一引导者的身份出现,对幼儿表达不清楚的或出现困难的地方加以纠正,耐心的指导,使每个孩子都能充分自主的参与活动中。 《图形找家》出自贵州人民出版社,新编学前班教材数学上册27页。这一活动属于操作型活动,关于图形认识及图形分类活动,可以在日常生活中随机组织练习,图形教育多与实物相结合,促进幼儿具体技能的发展。从不同的角度促进幼儿情感能力知识技能等方面的发展。
学习快乐吗?我想很多学生的回答是“不快乐”,为什么呢?看看我们沉重的书包就有了答案:它里面装满了早起晚睡、作业考试、成绩评比、特招重点等等,所以有人形象的说它是我们身上的负担和包袱,压得我们喘不过气来!果真如此吗?当我们静下心来冷静的想一想,就会得出另外一种答案:沉重的书包是我们人生的智囊、自信的源泉、远大的抱负!我们说学习苦,是因为我们仅仅从生理的角度去衡量它,苦于没有时间看电视、泡网吧、玩游戏、苦于没有时间贪睡、贪吃、贪玩,总之一句话,苦于没有时间贪图享乐!固然,吃喝玩是快乐的,但这种乐趣只是低级的、物质的、短暂的,是动物本能式的快乐,作为人类享受高级的、持久的快乐,应该是精神领域的快乐,她能陶冶情操、让我们自信自强,使我们生活得更幸福!如何获得,只有学习、学习再学习!
1.教学内容:本课是北师大版第三单元《分数》:《找最小公倍数》第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解公倍数和最小公倍数的概念的过程。并总结归纳出一些找最小公倍数的方法。2.教材编写意图:五年级学生的生活经验和知识背景比较丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出两个数的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。(二)对教材的处理意见1.教材中让学生找4和6的倍数,进而引出公倍数和最小公倍数的概念,利于学生建立对概念的理解。
(2)结合实际问题情境,学会分析量与量之间的关系。(3)了解图表在生活中的应用,能看懂用图来描述的事件或行为。2、过程与方法经历运用图表描述事件行为的过程,提高学生的现象分析能力。3、情感、态度与价值观感受数学与生活的密切联系,体会数学图形语言简洁明了的特点,增强数学的应用意识。在教学中要让学生结合具体的生活情境,在图表中寻找描述生活情境的信息,以此来认识、了解一些表示数量关系的图表,同时感受用数学图表来描述事件的简洁性。根据上述观点,我认为本课的重点在于:从纵轴和横轴所表示的意义来认识图表,并能从图表中获取信息。难点则是:怎样看图,如何用语言去描述事件发生的过程。新时代的课堂,是信息技术的课堂,因此本节课我设计了一个多媒体课件予以辅助教学。
【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。
一、活动内容分析西欧从5世纪末至9世纪历经四个世纪完成了由奴隶制度向封建制度的转变,西欧中世纪即西欧的封建社会,形成了与中国封建社会不同的特点。理解这些特点,将有助于学生理解西欧在世界上最早进入资本主义社会的原因。尽管神学世界观笼罩了西方中世纪,是黑暗的,但是应看到,自古代流传下来的政治思想传统如平等、自由、民主、法制等思想史都以不同的形式保存下来。欧洲的中世纪表面上看起来是一个阴森森的一千年(五百年到一千五百年),但实际上确实孕育了西方近代文明的重要时期。从探究活动的内容上看与第二单元的古代希腊罗马的政治制度及第三单元近代西方资本主义政治制度的确立与发展明确相关,有承上启下的作用。二、活动重点设计理解西欧封建社会的政治特点及对后世的影响;正确认识基督教文明
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。