一、说设计思路《鹅大哥出门》这个故事选用了小朋友生活中比较熟悉并喜欢的大白鹅为主要角色,讲述了一只大白鹅骄傲不懂礼貌的故事,特别是鹅大哥之前“红红的帽子,雪白的羽毛”和之后的“一只大黑鹅”对比这个情节既让人觉得有趣又符合幼儿的年龄特点,在生活中我们常常会看到一些自高自大的人,特别是现在独生子女较多,比较以我为中心,我觉得这个故事既符合幼儿的年龄特点又符合孩子们现在的心理而且也符合<纲要>中的教育要求,即教育幼儿使用礼貌语言与人交往,养成文明交往的习惯.二、说活动目标活动目标是教学活动的起点和归宿,对教育活动起导向作用。<纲要>语言领域中指出:发展幼儿语言的关键是创设一个是他们想说,敢说,喜欢说的环境。在新《纲要》中,活动教育提出了“幼儿园的教育活动,应以教师带领幼儿共同创设适应幼儿年龄特点的,丰富多彩的,引导幼儿在轻松愉快的心理氛围中,积极主动地去体验,实践、创造,促进幼儿身心和谐发展的一种教育活动。”因此,在整个活动中都以幼儿的自主参与活动为主,教师在活动中起一个引导者和支持者的作用,和孩子共同活动感受,我从认知、能力和情感三方面提出了本次活动的目标。1. 认知上:使幼儿在理解故事内容的基础上,初步学会复述故事,丰富词汇“神气、乐滋滋”2. 能力上:积极参与故事情节的讨论,愿意大胆表达自己的想法。3. 情感上:懂得不能骄傲,不能欺负弱小的道理体验骄傲自大带来的烦恼根据目标,在活动中,我把在游戏情节中理解故事内容,懂得不能骄傲不欺负弱小的道理设为教学重点,根据大班幼儿的语言发展情况,用完整的语言复述故事设为难点。三、说活动准备为了此次活动的组织符合幼儿的学习方式和特点,注重综合性、趣味性、活动性的协调统
二.教学目标的制定废旧的自行车轮胎看起来并不起眼,但对于孩子的来说却是一件不可多得的宝贝。它的可玩、可创造、可变形、将在活动中带给孩子极大的乐趣。素质教育的重点之一是孩子创新意识和创造能力的培养。在此次活动设计中,我将为孩子们创造各种有趣的情境,利用手中的废旧自行车轮胎,让孩子创想出各种不同的玩胎方式,启发他们的发散性思维,起到“一物多玩”,“一物多用”的效果。在富有创造性的故事情节中,幼儿也同样感受着这样一种熏陶:那就是不管敌人有多可怕,只要我们积极锻炼身体,团结合作,勇敢对“敌”,我们必定会取得最后的胜利。因此,根据器材本身和当今“二期课改”的精神要求,我为此活动制定了以下目标:1.通过尝试自行车轮胎的各种玩法,发展幼儿走、跑、跳、钻爬等基本动作,发展幼儿的想象能力和创造能力。2.让幼儿自定比赛规则和玩法,发挥幼儿主动学习的精神。3.通过激烈的比赛,发挥幼儿的竞争意识及不怕苦、不怕累,勇敢对敌的精神。三.教学活动设计和组织新颖的体育活动设计,对幼儿具有极大的挑战性和吸引力,它能大大地提高幼儿的探索欲望,激发幼儿对活动新形势的喜爱。整个故事情节叙述了小兔如何被大灰狼欺负,如何努力学本领、锻炼身体,最终齐心协力、打败大灰狼的故事。游戏开始部分,小兔自由自在地草地上蹦跳,听到妈妈(有老师扮演)在叫“狼来了”,小兔迅速地跑到房子(轮胎)内抱成一团,尽量不要掉到房子外,以免被大灰狼(由另一幼儿扮演)抓走。当大灰狼走时,小兔又重新回到草地,但狡猾的大灰狼却会每次来悄悄地偷走了他们的一座房子。到下一次狼来袭击时,因为房子数量的逐渐减少,就给小兔增添了躲藏的难度,这就要求小兔要迅速地调整所站的位置,以站下更多的小兔。虽然这只是一个小小的热身游戏,但却在无形中培养了他们关爱他人,团结协作和谦让宽容的精神。
三、聚焦开展"大提升",激发奋进活力。一是能力提升,开展岗位练兵。创新实行"一中心、五晾晒、两评述、五挂钩"的"1225"D建引领工作机制,把抓D建与抓业务相融合,把各科室的亮点实绩工作进行周晾晒、月通报,晾晒结果与平时考核、年度考核、评先评优、重点培养和提拔重用环节挂钩,激发干事创业积极性。加强实践锻炼,积极选派机关干部参加大督查、巡视巡察、选人用人检查、驻村帮扶等工作,在重大斗争一线锻炼队伍、强化担当。二是作风提升,培树良好风尚。把常态化作风评议作为衡量全市组织系统工作作风的"晴雨表",通过第三方平台每月发放作风评议票,随机抽取各行业各领域各职级服务对象组成"百人团"进行评议投票,查问题、看短板、知优劣、明症结,有力推动了全市组织系统转作风、提效能。
(二)说活动目标:《幼儿园教育指导纲要》在语言领域中提出:“发展幼儿语言的关键是创设一个能使他们想说、敢说、喜欢说、有机会说并能得到积极应答的环境”以及要“鼓励幼儿大胆、清楚地表达自己的想法和感受,发展幼儿语言表达能力和思维能力。”活动的目标是教学活动的起点和归宿,对活动起着导向作用。根据大班幼儿年龄特点及实际情况,确立了情感、认知、能力方面的目标,其中既有独立表达的成分,又有相互融合的一面。1、观察与狐狸拔掉老虎牙齿有关的图片,通过自主阅读理解故事内容。2、通过看一看,学一学,说一说,演一演,理解狐狸和老虎的心理活动。3、教育幼儿懂得接纳自己、接纳别人。有安静倾听的意识,愿意参与阅读活动。为了更好地服务于本次的活动目标,完成活动内容,我作了以下准备:人手一本小图书图片大图书二、说教法。教育心理学认为“学习者同时开放多个感知通道,比只开放一个感知通道,能更准确有效地掌握学习对象。”根据幼儿的学习情况,本次活动我运用了观察法、提问法、表演法等教学方法。利用观察法是因为这个年龄段的幼儿思维具有明显的具体形象性特点,属于典型的具体形象性思维。从幼儿认识事物的特点和语言本身特点来看,在幼儿园语言教育中贯彻直观性原则非常重要。以看图片的形式直接刺激幼儿的视听器官,能使教学进行得生动活泼,激发幼儿学习的兴趣。采用提问法是因为提问能引导幼儿有目的地、仔细地观察,启发幼儿积极思维。我运用启发性提问让幼儿将看到的具体形象的图片用语言描述出来,是解决活动重点的有效方法。提问法是语言活动中都能用到的方法,通过提问观察并回答,让孩子更方便的理解故事的内容。表演法让幼儿在通过学习对话的同时演绎故事中不同角色的话,更容易的使幼儿理解不同形象的心理活动,方便孩子理解故事的发展情节以及故事的内容。三、说学法。遵循幼儿学习的规律和幼儿的年龄特点,在《纲要》新理念的指导下,整个学习活动,始终以幼儿为主体,变过去的“要我学”为现在的“我要学”。遵循由浅入深的教学原则,幼儿在看看、听听、想想、说说、玩玩的轻松气氛中掌握活动的重、难点。幼儿将运用观察法、表演法等。观察法是幼儿通过视、听觉感官积极参与活动,幼儿通过观察图片直接获得印象。表演法是幼儿在学习中理解故事形象的心理变化,是幼儿练习说话的好机会。
一、肯定成绩,正视不足,充分认清做好安全生产和消防工作的极端重要性从去年到现在这一个时期,在安全生产和消防工作上,全县上下能够紧紧围绕“保安全、促发展”这个中心,认真落实工作责任,切实加强日常监管,扎实开展专项整治,较好的完成了各项工作任务,全县未发生重大安全生产事故和亡人、较大以上及有影响火灾事故,安全生产和消防形势平稳可控。取得这样的成绩,是各乡镇、各部门和各企业扎实工作、履行职责的结果,同时也说明只要思想上高度重视,工作上真抓实干,安全生产和消防工作是能够做好的
同志们:这次会议是春节假期后召开的第一个高规格的会议,也是聚焦高质量发展的一次动员大会,核心是落实项目建设、招商引资、营商环境和民营经济发展这四项工作。之所以合并起来集中部署,一方面是为了减少会议,另一方面这四项工作本来就是一体的。XX高质量发展关键在项目建设、核心在招商引资、基础在营商环境、动力在民营经济,这是XX高质量发展四个“擎天大柱”。所以,这次动员会议是落实中央、省市委经济工作会议精神的安排部署会,也是落实“八个行动”的一次再动员、再部署、再细化会议,就是为了能够早安排、早部署、早动手,从而实现各项工作开门红。刚才,XX常务副县长和XX副县长分别对全县投资和项目建设、优化营商环境、招商引资和民营经济发展作了非常详细的安排部署;发改、工信、商务、审批和海流图乡作了表态发言,讲得都非常好。特别是两位县领导的讲话,深刻学习领会中央、省市委经济工作会议精神,在县委经济工作会部署的“八个行动”基础之上,结合我们准备要干的、正在干的一些重点项目和重点工作进行了安排部署,非常详实、非常细致,会后要印发下去认真学习、抓好落实。
一、说教材该内容是人教版小学数学四年级第八册第四单元的最后一个内容,是在学生已经掌握了把整万、整亿数改写成用万或亿作单位的数的基础上进行教学的。通过本节课的学习,要使学生能通过独立思考、合作交流,掌握把大数目改写成用“万”或“亿”作单位的数的方法,为以后能准确、恰当地运用数目描述生活现象打下良好的基础。根据本课的内容和学生已有的知识和心理特征,我制订如下教学目标:1、掌握把较大数改写成用“万”或“亿”作单位的数的方法,并能根据要求保留一定的小数位数。2、经历将一个数改写成用“万”或“亿”作单位的数的过程,体验数据记法的多样性。3、感受数学知识的应用性。理解和掌握把较大的数改写成用“万”或“亿”作单位的小数的方法是本课的教学重点。位数不够用0补足是本节课的难点。
4、实际生活中的应用。提问学生:小数点位置移动引起小数大小的变化这规律在学习和生活有什么应用?(让学生思考在学习中,点错小数点的位置,小数的大小就不一样了。如果在银行统计时点错右漏写小数点会怎样?)教育学生做事认真细心。(四)小结质疑,自我评价这节课我们学习了什么?小数点位置移动引起小数大小的变化规律是怎样的?质疑:对今天的学习还有什么疑问吗?(培养学生敢于质疑,勇于创新的精神)评价:首先自评,学生对自己学得怎样,用什么方法学习,印象最深的内容是什么进行评介。接着可以生生互评或师生互评,教师重点表扬大部分学得好的同学或全班的同学,增强学生的自信心和荣誉感,使他们更加热爱数学。(五)作业布置:1、回忆一遍操作探索发现规律的整个过程,进一步培养学生良好的学习方法和习惯。2、预习97页,例2和例3,做书上98页练习第三题。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.