解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
设计意图:发现生活中污染、浪费水资源的现象,明白可以靠 法律法规的作用,切实有效地保护水资源。活动三:我们和小水滴 课件出示儿歌《我们和小水滴》,学生先自己诵读,再齐读。 设计意图:学以致用,深入感受水资源的珍贵,自觉珍惜水资源。环节三:感悟明理,育情导行 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活 生活中,大家要自觉珍惜水资源。设计意图: 将课堂所学延伸到学生的日常生活中,有利于落实行 为实践。六、板书设计为了突出重点, 让学生整体上感知本节课的主要内容, 我将以思 维导图的形式设计板书: 在黑板中上方的中间位置是课题 《小水滴的 诉说》,下面左边是板画的小水滴, 右边从上到下依次是宝贵, 稀少, 珍惜。
1、通过刚才的交流探讨,我们发现民间艺术源于生活,又高于生活,是先辈们用智慧和汗水创造出的“生活结晶”,代表着家乡人民的聪明智慧!2、那么,大家想亲自感受一下民间艺术的魅力吗?视频播放《土家摆手舞》,摆手舞是土家族古老的传统舞蹈,主要流传在鄂、湘、渝、黔交界的酉水河和乌江流域摆手舞是土家族古老的传统舞蹈,主要流传在鄂、湘、渝、黔交界的酉水河和乌江流域。3、小组活动,一起来学习一段土家摆手舞。4、通过大家刚才的体验,你能够猜一猜土家摆手舞的来源是什么吗?摆手舞反映土家人的生产生活。如狩猎舞表现狩猎活动和摹拟禽兽活动姿态。包括“赶猴子”、“拖野鸡尾巴”、“犀牛望月”、“磨鹰闪翅”、“跳蛤蟆”等十多个动作。有人说摆手舞起源于宗教祭祀活动。有人说是古代土家先民为了征服自然,抵抗外族入侵,便用一种“摆手”来健身壮骨,逐渐演变成后来的摆手舞。民间艺术满足了人们生产生活的多样需求,也能够表达人们的美好意愿,这是民间艺术产生的原因。
同学们,我们现在的生活如此便利、幸福,你们知道以前的生活是什么样的吗?让我们乘坐时光穿梭机,让时光倒流,穿越到上个世纪六七十年代,去 看看我们的爷爷奶奶、爸爸妈妈的生活吧!播放视频:1. 小组内交流:你看到了什么?2. 从你的爷爷奶奶、爸爸妈妈口中你还了解到过去生活条件是什么样的?(三)合作交流,追根究底小组交流合作探究:我们的家庭生活真是发生了翻天覆地的变化呀!同学们,你们想过没有,为什么会发生这么大的变化呢?小结:家乡的生活之所以有这么大的变化,一方面是国家改革开放和富民强国的政策指引,另一方面是一代又一代家乡人民艰苦奋斗,努力创造的结果。(板书:强国富民艰苦奋斗)(四)拓展延伸,情感升华科技在发展, 时代在前进, 我们的家乡跨上了时代的列车,正在飞速发展, 家乡的未来一定会更加美好,更加辉煌,作为小主人的你们,想为家乡做点什么呢 ?请和你的小组成员一起完成《家乡发展建议书》。
(2)观察记录,找出共同点。1. 观察: 在食品、衣服、文具、家电产品、药品等商品中任选一类,收集他们的商品标签、外包装、说明书等。2. 比较异同: 比较一下,同类产品有哪些共同的信息。 3. 记录信息: 仔细阅读并完成下面的观察记录表。4. 认一认:你在哪里看到过这样的标志,你知道这些标志的含义吗?【设计理念】通过系列活动,让学生参与实践活动中,从中获得知识。 活动二:避免购物小麻烦(一)读一读,析一析,学一学。1. 阅读常见购物中的陷阱。 “如果你不需要发票,我可以给你便宜点。” “亏本大甩卖。”2. 分析:容易出现什么麻烦和纠纷?为了避免出现麻烦和纠纷,在购物时应注意哪些问题?3. 学习“小贴士”。4. 出主意:你还有什么要提醒大家的吗?(二)交流、分享经验。你有网购的经历吗?你知道网购需要注意哪些问题吗?和同学们分享一下
一、说教材(一)教材分析本课是部编版《道德与法治》四年级下册第四单元第10课。这一单元主要从家乡的习俗和风俗出发,引导学生从自己身边可触可感的资源出发,理解自己家乡的风俗和民间艺术,通过对传统风俗和艺术的了解,教会学生保护传统的重要性。(二)教学目标1.了解我国春节、清明、端午、中秋等几个主要的传统节日的习俗、传说故事等,体会其对人们生活的影响。2.了解我们家乡的民风民俗,增强学生爱家乡爱祖国的感情。3.提高学生自主探素研究、搜集信息的能力。(三)教学重难点教学重点:了解家乡民风民俗的来历以及民俗活动。教学难点:体会民风民俗对人们生活的影响,激发学生的民族自豪感。二、说学情分析:中国是具有上下五千年的优秀文化传统的古国,有做立于世的璀璨文化,有数千年积淀起来的传统美德,可是随着人类社会的发展,物质基础的不断提高,生活环境的不断改善和西方文化的侵入,使得这些美德与文化已经和正在受到来自世界各地文化的冲击,传统文化受到忽视和挑战。
教师小结:同学们,通过刚才的讨论,我们明白了只有大家共同遵守规则,才能创造和谐文明的社会环境,正如著名学者莱蒙特所说的:“世界上的一切都必须按照一定的规矩秩序各就各位。”(六)、课堂总结师:通过今天对《建立良好的公共秩序》这一课的学习,我们懂得了什么?在生回答的基础上师进一步谈话:生活中有许多看起来是微不足道的事情,实际上都同社会的主产、生活乃至每个社会成员的工作、学习、生活密不可分,如果一个社会的公共秩序受到了破坏,这个社会的正常生产和生活也就受到极大的影响,社会风气就会颓败,反之如果一个社会的每个成员都学法、懂法、守法、护法,拥有一个良好的公共秩序,那么社会就会有条有理,井然有序,因此建立一个良好的社会公共秩序,是我们大家的迫切希望,希望同学们从我做起,从现在做起,认真遵守公共秩序吧!
3.小结:我们要体谅家庭中的每个成员的辛劳,学会关心他们,支持他们,表达我们对家人的关爱。活动二:争当“智多星”1.生阅读教材阅读角内容2.交流讨论:妈妈为什么愁眉苦脸?她遇到了什么烦心事?我是如何帮助妈妈的?3.小结:生活中,家庭成员有困难,我们要留心观察、主动询问,尽力关心和帮助家人。有困难同商议,共承担。活动三:做好“润滑剂”过渡:日常生活中,家庭成员间很可能会产生纷争。当家人意见不统一时,我们该怎么办呢?1.教材第13页情景(1)看一看:家人之间发生了什么纷争?(2)议一议:你会如何来处理?2.说说生活中你的家庭中有什么困扰争论?3.小结当家人意见不一致是,我们可以和家人一起讨论,一起商量,发挥好“润滑剂”的作用,和家人一起面对困难解决问题。
教师:看呐,毛毛虫正在侵蚀着我们的友谊树,这些不利于友谊的行为我们统统拿掉。(摘掉友谊树上的毛毛虫卡片)教师:友谊树上终于结出了丰硕的果实。朋友之间,贵在理解,贵在沟通。只有这样,友谊之树才能茁壮成长。活动三:小小卡片传真情教师:朋友给予了我们那么多的帮助,带来那么多的快乐,你想对你的朋友说什么?请同学们把你想说的话填写在友谊卡片上。(学生制作卡并赠送卡片,采访收卡片同学。让学生认识什么是友谊,学会表达对同学的欣赏和友爱之情)教师:让我们再次对我们的好朋友说出那句真诚的话语,师生齐读:“我们的好朋友!”教师:《论语》“君子和而不同”,意思是君子在人际交往中,能够与他人保持一种和谐友善的关系,但在对具体问题的看法上却不必苟同于对方。人人都有自己的特点,不一样的朋友带给我们不一样的感受。希望同学们以后主动去结识更多的朋友,大家取长补短,共同进步。
三、说教学过程(一)、视频、图片导入。1.师播“放白白的大米”视频及图片。生认真观察。师:视频和图片中是什么粮食?生:大米。师:对,是大米。大米可以做成香喷喷的米饭。当你吃着米饭的时侯,可曾想过,这白白的大米从哪里来的?今天,我们就来探究一下这个问题。2.板书课题:我们的衣食之源(二)、讲授新课。活动一:白白的大米哪里来看一看,说一说。1.看一看:继续播放大米生产过程视频。2.说一说:大米哪里来。育秧一一插秧一一田间管理一一收割一一碾米3.请选择一种农作物,可以是粮食作物,也可以是蔬菜,了解一下它的种植过程。【设计理念】通过观察和说一说,让学生对大米及其他农作物的种植过程加以了解,体会种田人的艰辛。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。