
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.

3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.

对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.

课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示

一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.

温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

1、认真排查,深入了解,确保关爱到位 一是通过深入排查、走访确保关爱对象确定合理有据。通过深入排查、走访,全面了解关爱对象家庭情况、生活困难、学习表现等,将家庭经济困难、各项表现良好、真正需要关爱的对象纳入到关爱范畴内,确保"关爱行动"不流于形式。二是全面掌握关爱对象困难情况,依据对象个体差异量身定制工作方案,确保关爱措施出实效。分析、研判不同对象个体需求上的差异,提供针对性的帮扶和关爱措施,确保"关爱行动"出实效。

晋代孙康,家境贫寒。每到晚上,没钱买灯油的他,总觉得就这样让时间悄悄溜走,实在可惜。一天半夜,他从睡梦中醒来,把头侧向窗户,惊奇地发现从窗户缝中折射出一丝微微的光亮。原来,那是大雪映射出来的光亮。于是,他立即穿好衣服,取出书籍,来到屋外,开卷阅读。此后,每到下雪的晚上,他都抓紧分分秒秒,孜孜不倦地读书。苏康映雪读书的故事展现的是一种克服万难、勤奋苦学的精神。李苦禅先生曾说:“鸟欲高飞先振翅,人求上进先读书”。意思是,鸟儿想要高飞翱翔,必须先张开羽翼

尊进的老师、同学们 :大家好!在这里,我提前祝大家节日快乐。同学们,“六一”是你们最快乐的节日,“六一”也是你们最高兴的日子。因为你们是家庭的宝贝,更是家庭的希望。你们能够快乐地成长,家庭就充满欢歌与笑语。你们是学校的孩子,更是学校的希望。你们能够全面地发展,学校就充满生机与活力。你们是社会的未来,更是社会的希望。你们能够和谐地发展,社会就充满热情与友爱。你们是祖国的花朵,更是祖国的希望。你们能够茁壮地成长,祖国就充满美好与希望。

老师、同学们:这个星期五大家知道是什么节日吗,不用我说,大家都知道了,它是我们一年一度的六一儿童节,是大家最盼望、最开心的节日!我们学校为了使同学们过的更加有意义,将在后天举行丰富多彩的文艺演出。在这里,我预先向同学们致以节日的祝贺,同时向辛勤培育你们成长的老师致以崇高的敬意。亲爱的同学们,你们肩负着复兴中华民族的历史使命,你们是肩负重担的一代,也是幸运的一代,你们面对的21世纪是全球化、信息化、经济崛起和人才竞争激烈的新时代,为了你们健康成长,我向你们提出几点希望:1、培养高尚的情操,树立远大的理想,塑造坚强的意志,自尊、自信、自主、自强,做合格的小公民。2、努力学习,奋发向上,学好各门功课,坚定个人成长的基础,争强为社会服务的本领。

幼儿园20xx升旗仪式国旗下讲话稿中、大班年级组亲爱的小朋友们,老师们,早上好:当我们站在这里,听着雄壮激昂的国歌,目睹着五星红旗冉冉升起,不禁为身为中华儿女而感到自豪。今天已经是9月28日了,我们伟大的祖国母亲——中华人民共和国的xx岁生日即将来临。xx年前的10月1日,也就是1949年10月1日是一个永载历史的日子。一面五星红旗,在天安门城楼上高高飘起。在这面国旗上,凝聚了千千万万革命者的愿望、信仰和追求,倾注了中国亿万人民对祖国、对民族的深情挚爱。伟大的祖国,我们共同的母亲!看,淤溪中心幼儿园的小朋友们正在为您庆祝xx岁寿诞!在这里,我们要以满腔真诚为您献上诚挚的祝福,每一声祝福都期待您更美好的明天!

幼儿园端午节国旗下讲话一敬爱的园长妈妈、亲爱的老师、可爱的小朋友们,早上好!我是大三班的xxx小朋友,今天由我在国旗下演讲,我演讲的主题是欢度端午,喜迎父亲节。在刚刚过去的传统佳节--端午节里,小朋友们一定都吃了粽子,看了划龙舟,度过了一个非常愉快的假期,但是你们知道端午节的来历吗?我来告诉大家吧!在我国古代有一位爱国诗人,名字叫屈原,他不忍心看到自己的国家被敌人侵略,就抱着一块大石头跳进江里,用自己的生命表达了对祖国的热爱。老百姓为了不让江里的鱼虾咬屈原的身体,就划船到江上,有的敲鼓吓走鱼虾,有把饭团丢进江里喂饱鱼虾。在那以后,每年的农历五月初五这一天,就有了划龙舟和吃粽子的习俗,以此来纪念爱国诗人屈原。小朋友们,我现在唱几句,我的家里有个人很酷,三头六臂刀枪不入,他的手掌也有一点粗,牵着我学会了走路。小朋友们,歌声里这个人是谁啊?对了,是我们的爸爸。下一个星期天我们又将迎来父亲节,爸爸们都很辛苦,大家一定要制作一件礼物慰劳爸爸哟,然后大声说,爸爸,我爱你!。

十六周国旗下讲话同学们:刚刚送走了五月份展能活动月,相信同学们已经从不同的方面体验到了成功的甜蜜滋味吧。紧接着的六一儿童节,更是让同学们开开心心地度过了快乐的一天吧,今年的六一恰逢与端午相连,真是幸福满盈啊!进入六月,回顾这个学期同学们对课外书的阅读一定有很多的收获吧。每周二和周四的午间阅读,是校园里最美丽的一道风景,你们在书海里遨游时专注的表情,是人间纯美的瞬间。相信你们在阅读的时候也感受到一种其他的娱乐无法替代的幸福体验吧。还记得《不一样的卡梅拉》里,卡梅拉家族的一次次探险,一回回让我们忍俊不禁的爆笑吗? 还记得在读《老鼠记者》时 ,我们仿佛在跟着杰罗尼摩一起天马行空地周游世界,经历各种惊险刺激而又妙趣横生的冒险之旅,并且总能从中找到许多快乐好玩的东西吗?

五月的时光在不知不觉间流逝,六月的阳光将照耀在我们的脸上。天真的笑脸,欢快的笑声,明天我们将迎来六一国际儿童节。 目前,各国政府普遍关注儿童的未来,保护儿童的权益。联合国1990年通过的《儿童权利公约》,我国是参与制定国和签约国之一。在批准《儿童权利公约》的同一年,我国颁布了《中华人民共和国未成年人保护法》,这对维护少年儿童的权益起到了积极的作用。“六一”是我们最快乐的节日,因为: 我们是家庭的宝贝,更是家庭的希望。你们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。

“六一”的太阳为什么这样辉煌?“六一”的花朵为什么这样芬芳?“六一”的红领巾为什么这样鲜艳?“六一”的孩子们为什么这样欢畅……你知道,他知道,大家全知道。全世界最年少的节日已经来到,全世界最天真的节日就在今朝。“六一”的歌声为什么这样动听?“六一”的舞蹈为什么这样多情?“六一”的故事为什么这样引人?“六一”的集会

五月的时光在不知不觉间流逝,六月的阳光将照耀在我们的脸上。天真的笑脸,欢快的笑声,明天我们将迎来六一国际儿童节。目前,各国政府普遍关注儿童的未来,保护儿童的权益。联合国1990年通过的《儿童权利公约》,我国是参与制定国和签约国之一。在批准《儿童权利公约》的同一年,我国颁布了《中华人民共和国未成年人保护法》,这对维护少年儿童的权益起到了积极的作用。“六一”是我们最快乐的节日,因为: 我们是家庭的宝贝,更是家庭的希望。你们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。