活动目标: 1、知道自己身体的不同部位的不同作用,学习运用身体不同部位移动身体,提高身体的灵活性和身体动作的表现力。 2、引导幼儿积极探索新的动作,从不同角度思考,独立或合作设计完成动作要求,发展幼儿创新技能。 3、在活动中让幼儿体验游戏的乐趣,培养合作互助的精神。 活动准备:音乐磁带、各类数字卡装扮的数字园,固定1.4米高的绳索,以山坡(上、下)、小河、雷区,电网的标志图分放在绳索下的场地上。活动重点:想办法运用不同部位移动身体活动难点:设计并完成脚不沾地移动身体活动过程:一、准备活动 1、在音乐伴奏下指导幼儿进行走、跑、跳、蹲、扭动身体、钻、爬等基本动作训练。 2、情景导入:“我们的小脚累了,让它们休息一下吧。”幼儿自由地在教师身边坐下。 3、提出问题:“刚才我们都用了身体哪些部位做了什么动作?”(脚走跑、腿弯、屈膝、手动、腰弯、臀扭等)师生共同小结:身体真灵巧,脚能走,腰能弯,手能撑……
活动目标:1、巩固对正方形的认识,了解平面图形和立体的区别。2、初步感知正方体,知道其名称和最显著地特征。活动准备:圣诞老人、大、小包装盒(人手一个)、正方形卡片、剪刀、彩笔(人手一个)、各种装饰材料(皱纹纸、亮光纸、卡纸等)。活动重难点: 重点:初步感知正方体,知道其名称和最显著地特征。难点:了解平面图形和立体的区别。活动过程:一、导入部分:出示圣诞老人,引起幼儿兴趣。师:圣诞节快到了,圣诞老人给小朋友们送来了礼物,我们一起来看看是什么吧?(出示包装盒)好漂亮的礼物盒,里面会是什么呢?打开看看圣诞老人为什么要送我们这些礼物呢?它想让小朋友探索一下这些包装盒有什么秘密?
2.学习在指纹图案上添加简单的线条表现出花卉的形态几动态。3.引导幼儿积极体验活动的乐趣。活动准备:1.音乐磁带,录音机,数码照相机2.画纸,水彩笔人手一份3.各种水粉颜料,调色盒,半湿抹布若干4.各种花的头饰活动过程:一、感受音乐,创编动作表演1.第一遍教师根据音乐自编一段小故事,边讲故事边放音乐让幼儿欣赏2.第二遍幼儿带头饰随音乐创编动作,教师用语言引导幼儿进行创编3.第三遍教师以蝴蝶的身份介入,鼓励幼儿创编出与别人不同的动作
2、 大胆作画,感受绘画的乐趣,以及发挥想象。准备:1、 各种水果的挂牌,水果妈妈的围兜一个,绘画材料人手一份。音乐磁带。2、 幼儿已有几种水果的绘画经验,且幼儿也认识了很多水果。过程:一、 引起幼儿绘画的兴趣教师做水果妈妈,幼儿做水果娃娃,大家随音乐跳到活动室,水果妈妈:娃娃们快坐下,听妈妈讲故事好不好呀。故事:在一个水果王国,住着很多和你们一样可爱的水果娃娃,他们过着幸福快乐的日子,可这个水果王国被好吃懒做的老鼠知道了,他们就知道吃现成的。水果娃娃知道了一开始也好害怕,不过它们动动小脑筋想到了好办法。你们知道是什么办法呀?
孩子到了大班,有了一定的“舞”的艺术表现能力。对音乐的感受力、想象力有了较大地提高,动手操作能力也在不断完善。特别喜欢自己探索、创造,并有一定的表演欲望。因此,我根据大班孩子的特点设计了这个以幼儿舞蹈为主的综合艺术活动。活动融合了手工、动作、舞蹈、即兴创编、画舞谱,还有本民族音乐、舞蹈的学习和体验的内容。对于大班的孩子,不要求舞姿,只要通过探索-发现、操作-尝试、感受-体验、即兴-创作等活动来品味“舞”的愉悦。安排的活动流程为:准备活动——探索、发现——结伴创编——展现欣赏一、活动目标:1、探索发现:彩纸表现的可能性,尝试“画”简单的舞谱。2、提高身体协调能力,对合作表演产生兴趣。3、体验飘逸和“舞”的愉悦。二、材料及环境设计:1、录有欢快本民族音乐的磁带一盘。2、彩色皱纹纸、竹筷若干。3、小脚图谱、小剪刀、胶布等。4、为幼儿提供能自由活动的较宽松的空间。
1.了解少数民族人民的民居、服饰、工艺品、民族活动、风俗习惯、文化艺术等,培养幼儿热爱少数民族的情感。 2.知道我们的祖国是多民族国家,各族人民勤劳、智慧、能歌善舞。 3、增进家园合作,密切家园联系。 活动准备: 1. 选好参观景点、订好门票。 2. 请家长于10月28日上午9:00来幼儿园。 3. 食品和水(一人一份)。 4. 讲清楚活动要求、规则以及需要家长协助的工作。
活动目标: 1.引导幼儿观察几种鸟的外形特征、习性和本领,初步了解鸟和人类的关系。 2.通过幼儿想保护小鸟的各种办法,在参与活动中激发幼儿爱鸟的情感。 活动准备: 1.发动幼儿和家长搜集关于鸟的资料和图片,了解关于鸟的知识。 2.鸟叫的录音,笼养小鸟。啄木鸟、信鸽、猫头鹰等几种鸟的标本。 3.课件:群鸟飞舞、唱歌,啄木鸟、信鸽、猫头鹰几种鸟活动习性和本领的动画。 活动过程: 1.听声音,激趣导入。 “今天,有许多客人要来和我们做朋友,听一听它的声音,猜猜它是谁?”播放小鸟叫声的录音。幼儿猜出后,请幼儿说一说都见过那些鸟。 2.把客人请出来:教师出示几种鸟的标本,做鸟飞动作把鸟标本分别放到各组中间,引导幼儿进行观察,了解鸟的外形特征。
【活动目标】 1、了解线是怎样纺出来的。 2、了解古代与现代纺车的不同,体会劳动人民的伟大智慧。 3、培养幼儿的观察能力和动手能力。 【活动准备】 各种不同材质、不同颜色的线若干,关于纺线的视频、古代的纺车、棉花若干、不同颜色的染料。重难点:了解线是怎样纺出来的。 【活动过程】 1、探索不同的线,导入活动 出示各种不同的线,请幼儿自由观察,自由探索。 师:“小朋友,你最喜欢哪几条线?”(幼儿自由发言) 师:那你们知道这些线是怎样来的吗?我们一起去看一下吧!”
目标:⒈正确感知10以内的数量,理解数的实际意义,复习9以内的加减。 ⒉探索有规律地排序,发展幼儿的观察力及动手操作能力。 ⒊通过“玩夹子”游戏,激发幼儿对感知、分类、排序活动的兴趣,使幼儿能关注生活中的一些数学现象,感受其中的奥秘。准备:各种夹子若干、花蕊图卡若干、动物卡人手一份(动物卡上面分别贴有9以内的加减算式),规律图表卡、数字卡一套。
解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成的.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种解法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号.
1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.
两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。四、课堂小结这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?目的:让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:1、 不要漏乘括号内的任何一项;2、若括号前面是“-”号,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究)
某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。