教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.4 二项分布. *创设情境 兴趣导入 我们来看一个问题:从100件产品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次数用表示,求离散型随机变量的概率分布. 由于是有放回的抽取,所以这种抽取是是独立的重复试验.随机变量的所有取值为:0,1,2,3.显然,对于一次抽取,抽到不合格品的概率为0.03,抽到合格品的概率为1-0.03.于是的概率(仅求到组合数形式)分别为: , , , . 所以,随机变量的概率分布为 0123P 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 一般地,如果在一次试验中某事件A发生的概率是P,随机变量为n次独立试验中事件A发生的次数,那么随机变量的概率分布为: 01…k…nP…… 其中. 我们将这种形式的随机变量的概率分布叫做二项分布.称随机变量服从参数为n和P的二项分布,记为~B(n,P). 二项分布中的各个概率值,依次是二项式的展开式中的各项.第k+1项为. 二项分布是以伯努利概型为背景的重要分布,有着广泛的应用. 在实际问题中,如果n次试验相互独立,且各次实验是重复试验,事件A在每次实验中发生的概率都是p(0<p<1),则事件A发生的次数是一个离散型随机变量,服从参数为n和P的二项分布. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
根据中班幼儿的年龄特点,他们对数字非常感兴趣,对周围事物充满好奇心。而且,数字的概念是抽象的,对于幼儿来说,数字的认识应强调多感官参与。因此,我选择了这个活动,主要是让幼儿能通过观察寻找、动手操作的过程中积极思考,以及灵活运用周围环境中的数字让幼儿在玩中学,促进幼儿对周围生活中的数字与生活密切相连。根据幼儿的认知理解水平,我认为本次活动的重点与难点应归结为:在活动中理解数字在不同的物体的用处,同时对周围生活中数字感兴趣。
1、提供生动有趣的学习情境。进行高矮的比较,并不是纯粹的知识性的学习,而是学生的一种体验性的活动,它包含了丰富的过程性学习目标。在这里,我提供具体有趣的素材,引导学生通过观察、比较、思考,使学生获得对比较高矮活动的体验。教学时,我充分关注学生活动的过程,而不是获得一些具体的比较结果。2、引导学生思考与交流。这节课的学习我力争让学生在动手操作的活动中领悟比较的方法,进行有序而且有条理的思考。在比较的过程中,学生会有不同的方法,教师应注意进一步培养学生倾听,尊重别人想法的良好习惯,并引导学生进行交流。3、联系生活实际,组织比较活动。除教材提供的情境外,我有联系到生活实际。引导幼儿不受物体大小、形状的影响,按高矮给物体排序。
1、通过寻找、涂色活动让幼儿初步感知梯形的特征。让幼儿找出图中不是长方形、正方形的图形并涂上颜色。由于梯形的概念幼儿不容易理解,所以活动设计我就不从概念入手,而让幼儿通过操作活动,反复感受,逐步理解梯形的特征。2、观察了解梯形特征。(1)出示梯形,提问:这个图形有几条边?几个角?你们看,它上面的边短,下面的边长,上下两条边平平的,旁边两条边斜斜的。这个图形像什么?(2)小结:这个像滑梯的图形,名叫——梯形。(3)不过,梯形宝宝可调皮呢,它一会儿翻跟头,一会儿躺下睡觉,你们看这样还是梯形吗?(小结:原来梯形可以倒着放,睡着放,它们都是梯形。)(4)分别出示直角梯形、等腰梯形,让幼儿了解它们也是梯形。提问:这个一边可以当滑梯的图形,是不是梯形?这个两边有一样长滑梯的图形,是不是梯形?幼儿认识梯形的另外一个难点是梯形的多样性。幼儿认识的特点是先入为主,容易形成定势。所以活动开始时就要让幼儿接触各种梯形,每个环节中幼儿所看到的、制作的梯形都是各种各样的。
1、创设情境、激发幼儿参与活动的兴趣兴趣是最好的老师。通过律动运动操引起幼儿上课的兴趣,吸引他们的注意力,激发他们参与活动的兴趣。引导学生回忆已经学过的图形,借机引出课题,交代学习目标。2、合作交流,探究新知(1)梳理思路,展示过程。教师用电子白板演示分类的过程,加深学生对图形分类的认识。(2)幼儿分组尝试分类提出分类问题之后,让幼儿先思考一下如何分类,在独立思考的基础上再让幼儿借助学具分小组动手分一分,说一说。(3)运用拓展,课外延伸出示拼图,启发幼儿用几何图形自由快乐拼图。引导他们思考问题,寻求解决问题的办法,相互交流帮助,分享探索的过程和结果。从而得出结论--用几个不同形状的图形能拼出一个新的图形来。幼儿在游戏过程中反复感受、反复体验以突破难点。同时也培养孩子初步的合作意识和能力。
新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者。活动中应力求“形成合作式的师幼互动”,因此本活动我除了和幼儿一起准备丰富的活动材料,还挖掘此活动的活动价值,采用适宜的方法组织教学。活动中我运用了1、情景表演法:活动导入部分既要让幼儿发现问题,引出下面一系列的疑问及探索,又要通过幼儿感兴趣的方式设置悬念,因而我设计了小兔出门摔倒这一情节,并通过情景表演的方法启发幼儿思考。2、演示法:是教师通过讲解谈话把教具演示给孩子看,帮助他们获得一定的理解,本活动的演示是运用几何图形的基础上,学会区分异同。此外我还运用了观察法、谈话法等,对于这些方法的运用,我“变”以往教学的传统模式——教师说教,为以幼儿为主体,教师以启发、引导的方式,充分调动幼儿学习的积极性,并以“游戏”贯穿活动始终,让幼儿在玩中获得知识,习得经验,真正体现玩中学,学中乐。
1、设计意图:分类是根据物品的同和异,把物品集合成类的过程,也就是把相同的或具有共同特征的物品归并在一起。对小班幼儿来说分类包含两个层次。一个是求同,就是把相同的物品摆放在一起,比如西瓜和西瓜、糖果和糖果。第二个层次是分类,分类就是把有共同特征的物品放在一起。在本节课中就是在找到一模一样的礼物的基础上再把礼物分成可以吃的,可以玩的和书本三大类。求同是分类的基础,因为求同时的标准是现成的,而分类时要幼儿自己产生标准,他们会把西瓜和糖果都放到食物箱里。所以设计时先让幼儿进行求同活动,提高他们掌握标准的能力,循序渐进,再让幼儿进行分类活动。通过生动的游戏形式,让幼儿在动动、玩玩、做做的过程中,积累有关类的经验,提高幼儿对数学活动的兴趣。2、目标定位:1、让幼儿能找出相同的物品,并知道摆放在一起。2、练习将物品分类,并养成分类摆放物品的好习惯。3、让幼儿通过游戏体验相互合作、和同伴分享的快乐。
说教法、学法:这一节课的数学是针对小班幼儿,他们的年龄小,爱动,爱玩儿,好奇心强,注意力容易分散,根据这一特点,为了抓住他们的兴趣,激发他们的好奇心;我采用了愉快的数学方法。以游戏的形式让幼儿在游戏中学习,充分发挥幼儿对学习的积极性。为了更好地突出有幼儿的主体地位,在整个数学过程中,通过幼儿数一数,说一说,做一做多种形式,让幼儿积极动眼,动脑,动手,引导幼儿通过自己的学习经验来学习新知。积极开展本节课的教学活动。课堂教学是幼儿数学知识的获得,技能,技巧的形成,智力能力的发展,因此我设计了以下3个环节:1.唱歌曲引起兴趣,在这个环节中说出1.2.3分别像什么,引发幼儿的好奇心,这样,幼儿对之就有了兴趣。2.观察:这个环节中我出示的图片让幼儿观察他们像什么,然后说出是几
二、说教材数字对于幼儿来说是枯燥,为了激发幼儿学习数学的兴趣,我设计了本次数学活动,以情景故事为主线,把抽象概括的数学知识生活化、游戏化,引导幼儿在活动中玩中学、学中玩,激发幼儿对数学活动的兴趣。三、说活动目标大家都知道活动目标是教学活动的起点和归宿,对教学活动有导向作用,根据中班的年龄特点,我确定了以下几个目标,1.感知7的物体数量,理解6添上1就是7。2.学会把物体的数量用自己的方式记录完整。3.体验生活中数学的有趣和有用,激发参与数学活动的兴趣。四、说重点难点针对以上的分析,我把本次活动的认知目标为重点,技能目标为难点,为了更好的突破重点和难点,实现教学目标,数学源于生活,用于生活,我为活动准备了多媒体课件《开心农场》等。五、说教法《纲要》中指出教师要成为幼儿在学习活动中的支持者、合作者、引导者。为了帮助幼儿掌握重点,突破难点,我采用了情景激趣法、启发提问法、游戏法,激发幼儿学习的欲望,培养他们主动探索的兴趣和习惯。六、活动总结最后说本次活动的亮点,本次活动是游戏法与情景法的相结合。中国著名教育学家陈鹤琴说过“生活即教育”,在创设的情境中,引起幼儿的好奇心,贴近幼儿的生活,在游戏中激发幼儿参与数学活动的兴趣。教无定法,贵在得法,在本次活动中采用了多种的教学法让幼儿在趣味性、游戏性的活动中发展各方面的能力。
结合目标,我将通过四个环节实施活动:环节一:情景导入,引起幼儿的兴趣。兴趣是主动参与的关键,教师以情景的方式导入“新年快到了,图形宝宝们要进行大联欢活动,我们一起看看都有哪些图形?”对不同的图形进行巩固认识,为后面的图形创意做准备。环节二:分组操作“按数取图形”进行创意,并交流讨论,感知数量守恒。这一环节中我又分了两个小环节进行活动:一是通过幼儿分组操作“按数取图形”进行创意,一组是图形相同颜色不同;一组是图形相同,大小、颜色不同;一组是大小、颜色、形状都不同;请幼儿按各组数卡取相应数量的图形进行创意,不仅体现了数学领域的内容,从中也渗透了艺术领域的内容。二是作品展示,交流讨论,感知数量守恒。将幼儿的作品分组进行展示,请幼儿分组介绍,“你用什么图形进行创意的?你们拼的什么?这些图形有什么不同?数量相同吗?”等等,再出示数卡,依次介绍,从而了解物品不受颜色、形状、大小以及空间排列形式的影响,正确感知6以内的数量。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.3.注意改进的方面本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口数不等,只有按2:3:6的比例摊派才较合理,则三个村庄各派多少个劳动力?2:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?目的:检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.实际活动效果:从学生做题的情况看,大部分学生都能正确地列出方程,但其中一部分人并不能有意识地用“列表格”法来分析问题,因此,教师仍需引导他们能学会用“列表格”这个工具,有利于以后遇上复杂问题能很灵活地得到解决.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1. 两个未知量,两个等量关系,如何列方程;2. 寻找中间量;3. 学会用表格分析数量间的关系.
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。