解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
20**年全民国防教育日活动总结今年9月17日是我国第22个全民国防教育日。韩村中学积极响应上级号召,在9月16日——9月21日期间开展了全民国防教育日系列宣传教育活动,现将相关活动情况总结如下:一、组织开展了以国防教育为主题的国旗下讲话9月19日(周一)升旗仪式,九一班学生以“传承红色基因,汇聚强军力量”为主题进行了国旗下讲话。引导广大学生牢记历史、勿忘国耻,强化学生的国防意识。二、召开以国防教育为主题的班会活动结合本校实际,以班级为单位开展以“国防教育”为主题的班会活动。通过班会活动普及国防知识、厚植国防观念,深化爱国主义教育,引发学生爱国热忱。
1、 前提条件:①环境几乎一样的平原地区,人口分布均匀2、 ②区域的运输条件一致,影响运输的惟一因素是距离。城市六边形服务范围形成过程。(理解)a.当某一货物的供应点只有少数几个时,为了避免竞争、获取最大利润,供应点的距离不会太近,它们的服务范围都是圆形的。 b.在利润的吸引下,不断有新的供应点出现,原有的服务范围会因此而缩小。这时,该货物的供应处于饱和。每个供应点的服务范围仍是圆形的,并彼此相切c.如果每个供应点的服务范围都是圆形相切却不重叠的话,圆与圆之间就会存在空白区。这里的消费者如果都选择最近的供应点来寻求服务的话,空白区又可以分割咸三部分,分别属于三个离其最近的供应点。[思考]①图2.15中城市有几个等级?②找出表示每一等级六边形服务范围的线条颜色?③叙述不同等级城市之间服务范围及其相互关系?3、理论基础:德国南部城市4、意义:运用这种理论来指导区域规划、城市建设和商业网点的布局。1、 应用——“荷兰圩田居民点的设置”。
一、加强领导,健全网络 为进一步完善食品药品安全监管体系,构建安全责任网络,确保社区人民群众的消费安全。嘉丰社区居委会积极成立食品药品监督领导小组,由社区主任任组长,副主任任副组长,社区志愿者为成员,构建了一支强有力的安全网络队伍。同时和各成员签订了食品药品安全工作目标责任书,明确了社区各个监管小组的责任,配备了协管员和信息员,从而健全了街道社区两级食品药品安全工作的监管网络体系,有效地加强了我社区食品药品安全工作的力度。 二、广泛宣传,营造氛围 我社区以维护群众食品安全为出发点,以提高群众对食品药品安全知识的了解、增强群众安全意识和维权意识为目标,紧紧围绕工作实际,创新工作思路,多方位多角度开展食品药品宣传工作,营造了全社会关心支持食品药品监管工作的良好氛围。 一是利用赶场日,在社区宣传食品药品安全知识,发放宣传资料,发动群众积极参与、监督食品药品安全。 二是开展食品药品安全知识讲座。在社区市民学校开展了中医养生等健康知识讲座,同时发放相关知识宣传册300余份。 三是利用社区卫生信息员宣传安全知识。以各社区卫生信息员为基础,街道提供的宣传资料,卫生信息员免费发放到户。同时在各社区设立知识宣传点,居民可免费索取相关宣传资料。通过各种宣传形式,提高了人民群众的健康饮食安全。
2、培养幼儿的动手能力、审美能力和创造性思维能力。环境创设一、信息资源的准备1、收集各种扇子实物,互相介绍自己的扇子,寻找各种扇子的异同,启发幼儿按大小、形状、制作材料(绸面、藤面、葵叶、鹅毛、纸、木等)、扇面图案进行分类。2、家长与孩子共同收集跟扇子有关的故事、录像、图书、图片等资料,鼓励幼儿将查找途径、内容用图表形式记录下来(见图一)。3、在室内布置有关幼儿参观商场、购买扇子的照片,同时把幼儿围绕扇子所提的问题及如图一的记录表展示在墙面上。二、工具与材料的准备1、多用组合架。用铁丝做一个架子固定在墙上,将相关的工具与部分装饰用品串挂在组合架上,如线团、包装纸等。在剪去瓶口的矿泉水瓶、酸奶瓶内插装画笔、尺子、钳子、小锯子、剪刀等工具。2、趣味废纸箱(见图三)。既可美化活动区,又能培养幼儿的环保意识。如将蛋糕盒纵向裁半,将其装饰成孩子头像或其他形象,穿绳悬挂在区角墙壁上。也可直接将经过装饰的方形纸箱放在区角。3、制作材料及方法(见图四)。有待装饰的扇面和扇页,白志、色纸与废旧挂历纸,有孔的薄木片、薄竹片条等,启发幼儿按自己的意愿选择材料进行制作,作品完成后可用各色丝线饰扇把。
二、团队成员要做到: 、按时参加团队组织的集体活动。按照阅读计划自学专业读本。 2、按时完成每两周一篇的专业阅读写作低限任务(随着时间推移,将适度增加作业量),每月一篇的鼓励性投稿任务(逐步变为任务)作业完成时间为每月的15日前和月底前。 3、不允许下载或抄袭日志充当任务。转载的日志要标注清楚。
根据发展需要,学校制定校本研培,促进中青年教师专业化成长发展计划,有计划地开展对中青年教师的培养提高工作。 2、45岁以下的中青年教师必须及时对个人发展做好全面规划,并写好书面计划统一上交学校。以学年度为单位,凡是未及时上交者,每份扣款10元。 3、学校校长,教科处,教导处随时对中青年教师,特别是新参加工作的教师的教学“六认真”情况,进行检查、总结,对出现的问题进行指导和提出改进意见。督促其快速成长。 4、鼓励教师参加各种形式的学历提高,要求45岁以下的教师,小学达专科,中学必须达本科,未达标者,须在三年内,最迟不超过四年达标,否则,将对其所担任的工作进行重点调换。 5、在职参加学历学习达标者,学校给予200元的补助奖励。
五、劳动报酬 第八条 本合同的工资计发形式为:____。 (一)计时形式。乙方的月工资为:____元(其中试用期间工资为:____元)。 (二)计件形式。乙方的劳动定额为:____,计件单价为:____。 第九条 甲方每月___日以货币形式足额支付乙方的工资。 第十条 本合同履行期间,乙方的工资调整按照甲方的工资分配制度确定。 第十一条 甲方安排乙方延长工作时间或者在休息日、法定休假日工作的,应依法安排乙方补休或支付相应工资报酬。
(一)狠抓项目建设,稳住经济发展大局。 将继续坚定不移贯彻创新、协调、绿色、开放、共享的新发展理念,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,统筹发展和安全,加快建设现代化经济体系,助力企业转型升级,实现经济行稳致远。20**年,将积极推进申报的1个省级新旧动能转换优选项目(山东欧创电气有限公司高端电力装备智能智造一体化项目)4个市级重点项目加快建设。
7、重大节日期间组织退役军人参加爱国主义教育活动。举行退役军人政治学习两次,清明节、国防教育日组织退役军人开展清明节烈士陵园祭奠活动,“七一”、“八一”期间举行退役军人观影活动,分别观看爱国主义影片《阻击手》、《上甘岭》。x月xx日,组织辖区退役军人志愿者参加在五一广场举办的全民国防教育日活动,通过发放宣传资料、展示图版等形式,调动现场观众参与积极性,提高广大居民参与国防教育和支持国防建设自觉性。8、开展“八一”慰问系列活动共叙军民鱼水情联合共建单位一起走访慰问武警兴安机动大队,并向全体部队官兵致以最诚挚的节日问候。与包联单位开展军营体验观摩活动,部队负责人带大家参观了官兵宿舍,还为大家详细讲解了部队军事训练、后勤保障等情况,营造了“军爱民,民拥军,军民团结一家亲”的良好氛围。
(二)抓细抓实城市管理。为顺利迎接旅发大会,街道将在城市管理上持续发力。扎实推进金沙路路段提质增效,持续向改革"要动能",做好城管体制改革工作,充实执法力量;认真落实门前"两进"责任制度,要求商户做好门前"三包",并结合创文工作,开展小区环境卫生大整治大清理。(三)坚决守住社会稳定底线。始终以服务群众为宗旨,以化解矛盾为导向,聚焦群众急难愁盼的问题,深化矛盾纠纷排查化解,健全社会治安防控体系,建好用好非诉讼纠纷化解机制,全力做好辖区信访及涉稳问题的管控和处置,建成纠纷有调解、小事不出社区、矛盾不上交的治理体系。统筹推进燃气、食品等重点领域安全专项整治,加强安全隐患排查整治和安全生产规范化建设,防范和遏制各类安全事故发生;开展反诈、禁毒、防非处非工作宣传,确保群众生命财产安全和辖区社会和谐稳定。
三、强化突击检查,筑牢“安全线”。集中清查,堵塞漏洞。认真剖析违纪案例,查找安全隐患,引导xx人员认清酒驾危害,增强法纪敬畏之心,切实筑牢思想防线,真正做到内化于心、外化于行。严格落实好一日生活秩序,持续抓好队伍管理和安全防事故工作,紧盯“人、车、酒、网、电、密、”等重点环节,及时发现消除隐患苗头。严格落实常态测酒制度,突出对在外人员、值班人员和干部骨干的抽查,确保不落一人,全员覆盖,严防违规饮酒问题发生,为队伍始终安全稳定打下坚实基础。采取不打招呼,错时检查的方式对全体人员酒精测试进行排查,检查是否违规安装涉赌手机软件、是否参与网络赌博、是否存在借债、借贷、大额消费等情况,尤其是对涉酒、涉赌、涉贷等重点问题,及时发现化解潜在的风险隐患,坚决整治队伍管理松懈、纪律松弛、作风松散,严防各类事故案件的发生。
第二、班级境况 我们班经过半个多学期的努力,大多数学生各方面的表现都有了明显进步。班风正,多数学生能主动学习,学生集体荣誉感强,我们的目标就是中考能考上理想的高中。 一个成功的班级,离不开一批得力的班干部和负责人的老班。而我们班正是一个成功的班级, 这要归功于班委们及老班。谢谢你们。 同学们,我们这一学期的航程又开始了。曾经的分数,不代表什么了曾经的表现,不意味什么了。如今是新的开始,新的希望,昨日的夕阳虽然美丽,但是今日的初阳更加辉煌光明在你我的前后,只要勤奋,成功在望。只要努力,落后的鸟儿也会赶上群体。知识的海洋在等着你拼博,生活的天空在等着你翱翔!
二、存在的问题我乡食品药品安全工作虽然取得了一定成绩,但与上级要求和其他兄弟乡镇相比,还有一定的差距。一是办公条件有限,执法力量薄弱,食品检测技术有待进一步提高。二是执法人员力量单薄,工作开展角度不全。三是执法办案水平不高,市场主体经营范围小,处罚力度不够大。四是部分经营户对主体责任意识不够强。三、下一步工作打算(一)推进安全监管工作,守住安全底线。一是强化食品药品安全监管。严格落实食品安全责任制,持续加大监管力度,全乡餐饮单位分类定级暨店外挂牌公示实现全覆盖;扎实开展校园食品安全守护行动,全力保障校园食品安全,防范和减少食源性疾病事件;二是加强特种设备安全风险防范,做到监管全方位、全覆盖、无盲区。加大特种设备隐患整治力度,确保实现特种设备隐患整治率、注册登记率、日常监督检查计划完成率、定期检验率均达100%。
为大家收集整理了《高三班级团支部新学期国旗下讲话稿精选》供大家参考,希望对大家有所帮助!!!尊敬的各位老师,亲爱的同学们,大家好!我致辞的题目是《新学期 新起点》。很荣幸,在新学期的开始能代表全体学生在国旗下讲话。首先请允许我代表全体同学,向多年来为我们辛勤付出的各位老师致以崇高的敬意和诚挚的祝福,祝你们新的学期里身体健康,工作顺利,并预祝所有的同学们学习进步,健康成长。金秋送爽,硕果飘香,在这酷夏的暑气还没有消退之时,我们已迎来了一个崭新的学期。学校里来了新的面孔,为学校注入了新鲜的血液。我们也是一样,度过了一个欢乐美好的暑期,怀着无比喜悦的心情又回到了熟悉而又亲切的菁菁校园。经过了烈日烤灼的校园更是焕然一新。新学期,新气象。新,就是与旧不同;新,就是变化;新,就是进取;新,就是发展;新,就是创造。在新的学校,在新的学期,我们要不断求新,求变化,求进取,求发展,求创造。因为教育是常新的,十三中学是常新的,十三中学的每一个学子都是常新的。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。