最终使这节音乐课在这种快乐的氛围中结束,就像本课的歌曲迷人的火塘一样,那种迷人的情境永远留在我们的心中。这是课的结束部分,通过表演已学的民族歌舞与器乐演奏来巩固旧知,使主题突出,情感升华。(四)、小结:这节课我们来到了美丽的贵州,学习了一首具有鲜明的侗族民歌音调特征的创作歌曲,并了解了一些侗族的风土人情。通过今天的学习与感受,希望同学们能主动多了解些我国各民族的人文知识。为实现我们中华民族的伟大复兴而努力学习。五.教学反思本节课主要以一三四教学模式为教学方向,努力做到人人参与,小组合作,以学生为主,指导学生学习歌曲并从浅入深的让学生掌握歌曲的旋律。本节课环节过多,在时间分配上要注意,着重点要分清主次,有的环节也应该取舍得当。同时这使我明白了实践出真知的道理。我会继续努力的!
6、然后模唱《森林的歌声》中的三段主旋律,并通过模唱、模仿乐器演奏等方式分别熟悉三段旋律。7、乐曲当中的三段主旋律的听辨,是本节课的重难点,所以我通过各种方式让学生去熟悉,如:模唱、表演唱等,让学生通过不同的形式去熟悉各段主旋律。由于这三段旋律情绪上的区别不是很大,所以学生比较容易混淆,所以所以我采用让学生动笔记录音乐的方式,来更准确的区分音乐。8、紧接着老师介绍这么美丽动听的音乐来自大森林,可是人们却不珍惜它,用幻灯片展示一组人们乱砍乱筏,肆意掠杀动物的图片。激起学生内心的对坏行为的愤怒,也唤醒学生保护环境的意识。9、老师带领学生用自己的方式来尽一份力,来呼唤更多的人保护环境。老师把本节课的3歌主题加入歌词,请学生来演唱、录音,来宣传保护环境,呼吁人们留住美好的大森林。
第一环节“情景导入”,现代信息技术在这一环节体现非常充分,让学生欣赏一些关于船的图片第二环节“反复感受,轻松学歌”,音乐是听觉的艺术,在这一环节中,我首先让学生通过反复聆听来感受这首歌曲,接着采用模唱法和听唱法相结合让学生在轻松愉快的氛围中学会了本课歌曲。第三环节“表现歌曲”这是本课中最出彩的一个环节。在前面的几个环节中层层铺垫,为学生积累了很多艺术实践和经验,这时让学生拿着自己的船进行音乐表现,学生已经没有困难,而且能够表演得很到位,将整堂课推向高潮。最后的拓展部分引发学生对祖国热爱,激励他们努力学习而使学生喜欢音乐,感受音乐带给我们的美以及对未来的憧憬和理想。让他们在以后的学习生活中能奋发向上!
《大青树下的小学》是统编教材小学语文三年级上册第一单元第一课。《大青树下的小学》是一篇精读课文,课文通过描写边疆的一所民族小学的孩子们幸福的学习生活,体现了祖国各民族之间的友爱和团结。课文层次清晰、段落分明。先写上学的路上和来学校的情景;再写上课时和下课后的情景,最后以自豪赞美的文字点题。学习本课我将引导学生通过对课文的整体把握和重点词句的理解,了解我国各民族儿童的友爱团结及他们幸福的学习生活,体会贯穿全文的自豪和赞美之情。
2、了解雨与人类的关系。3、激发幼儿观察、发现、探索自然的兴趣。 活动准备1、木偶台、木偶小兔、兔妈妈。2、酒精灯、烧杯、玻璃片、玻璃杯、火柴。3、投影机、故事《小水滴旅行记》、有关幻灯片、磁带。 活动过程一、教师木偶表演,提出尝试问题 教师以兔妈妈带小兔出去玩,忽然天下雨了,小兔问妈妈:“天上为什么会下雨?”的故事情景导放课题,提出问题:“小朋友,你知道天上为什么会下雨吗?” 二、小朋友做小实验(幼儿第一次尝试,分组活动)1、幼儿点燃酒精灯,把水加热。2、教师提出尝试问题:仔细观察一下,你发现了什么?3、小结:水热了就会有水蒸气,许多水蒸气向上跑的现象叫做“蒸发”。4、讨论:你平时看到过“蒸发”现象吗? (发散性思维)
为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:五、说教法学法我依据“教学有法,教无定法,贵在得法”,同时为了达到既定的教学目标,突出重点,突破难点。本节课我采用的教学方法主要有创设情境法,引导启发法,同时辅以讲练结合,借助现代化的教学手段,以达到良好的教学效果。根据新课标的要求,同时又设计了与教法相适应的学法,我将“学习的主动权还给学生”,通过自主探索,合作交流等方式自主学习,真正让数学教学的课堂变成学生的课堂。六、说教学准备为了更好的达成本节课的课堂教学目标,老师学生需要做如下的教学准备:1、教具:根据教材内容自制的多媒体课件等教具。2、学具:学生以小组为单位准备表格等学具。
三、夯实责任◆一讲完成工作的时限。◆二讲工作任务要层层分解,落实责任。◆三讲工作中要齐心协力,上下联动,相互配合。◆四讲工作要分步推进,稳步实施。◆五讲要注意解决工作中出现的问题,要创造性地开展工作。
前段时间曾经看到一个报道,让我很受启发,说美国一家大公司非常重视安全工作,不管召开任何会议他们都有一个惯例,正式开会之前主持人必须说:“开会前,我先向诸位介绍安全出口。”而且,在会议室里还有一张特殊的椅子,上面罩着一个红布套,套子上写着“如有紧急情况请跟我来”。这张椅子不是每个人都可以坐,只有非常熟悉所在楼道情况的人才有资格坐。公司还规定,上下楼梯必须扶扶手,在办公室里不准奔跑,铅笔芯要朝下插在笔筒内,喝水时手里不许把玩东西———如此谨小慎微的安全教育、规章制度和具体措施,看起来是安全生产管理中的一个个小小元素,但正是这一个个小小的安全元素,使得这家大公司一直保持着骄人的安全记录,并造就了“让员工在工作场所比在家里安全十倍”的神话———这就是享有全球最安全公司美称之一的杜帮公司。
2022领导安全生产的讲话稿?各位领导、各位朋友:大家好!不论是工作或生活中,我们常常忽略一些无关紧要甚至是看上去不起眼的小事物,常常抱着不足挂齿,微不足道之态度,其实不然。前段时间曾经看到一个报道,让我很受启发,说美国一家大公司非常重视安全工作,不管召开任何会议他们都有一个惯例,正式开会之前主持人必须说:“开会前,我先向诸位介绍安全出口。”而且,在会议室里还有一张特殊的椅子,上面罩着一个红布套,套子上写着“如有紧急情况请跟我来”。这张椅子不是每个人都可以坐,只有非常熟悉所在楼道情况的人才有资格坐。公司还规定,上下楼梯必须扶扶手,在办公室里不准奔跑,铅笔芯要朝下插在笔筒内,喝水时手里不许把玩东西———如此谨小慎微的安全教育、规章制度和具体措施,看起来是安全生产管理中的一个个小小元素,但正是这一个个小小的安全元素,使得这家大公司一直保持着骄人的安全记录,并造就了“让员工在工作场所比在家里安全十倍”的神话———这就是享有全球最安全公司美称之一的杜帮公司。很显然,杜帮公司是抓住了安全生产管理中的细节和元素,这些看起来微不足道的细节和元素,正是安全生产中的命脉之穴。这不禁让我想到了曾经发生在
这个学期我们招收新生幼儿175名(其中包括五义办学点的27名小班的小朋友)小班配有两教一保,即班主任、配班老师、保育员。幼儿园班主任既是幼儿的组织者又是他们的领导者和教育者,她既担负着教育教学工作设计与计划,又管理着幼儿日常所有琐碎事务。配班老师在班主任的指导下,根据班级计划及每周活动安排配合班主任组织实施教育教学活动。保育员是负责照顾幼儿的生活老师。教师是一项最辛苦、责任最大、要求最高的职业。我们幼儿园里的每一位老师都是经过挑选、资格认可才最后录用的,各位教师都是德才兼备的。每年九月份新招收的孩子们刚入园时,由于对环境不适应,有些孩子又哭又闹、对老师又踢又咬,即便这样,我们的老师们也没有怨言,仍然耐心细致地哄着他们,用妈妈的爱平复着孩子入园的焦虑,让他们感觉幼儿园就像自己的家;这段时间,经过教师与保育员的辛苦努力,小班幼儿在园一日生活情况已趋向稳定。你们的孩子已经慢慢的适应了幼儿园的集体生活。
作为母亲,此时此刻,我无比激动,多少个艰辛和忙乱的日子里,总盼望着孩子长大,我曾无数次的想象和憧憬着她身穿婚纱亭亭玉立的站在我们面前的情景。突然间她长大了,拥有了漂亮、健康和知识,今天又做了幸福的新娘!母爱是一条回家的小路,伴着这首诗我的女儿走过了二十几个春夏秋冬。在她成长的路上,给我们带来了许许多多的快乐与幸福。至今我还能清晰的记得她六岁时获得宁波市舞蹈比赛一等奖的演出情景,后来的全国雏鹰奖和新苗杯主持人金奖给我们带来了一次次的惊喜和欣慰。因此。我祝福我的女儿,也感谢我的女儿。同时我也感谢我们的亲家,你们的精心培养让我们的家庭从今天开始有了一个儿子。
一.教材分析本节课选自人教版数学教材三年级下册第二单元《除数是一位数的除法》第二小节《笔算除法》的第一课时——《“一位数除两位数商是两位数”的笔算除法》。1.教材的特点、地位和作用:本节课是整数除法的相关知识,它是在口算除法和除法竖式的基础上进行教学的,又为学生掌握除数是两位数的除法、学习除数是多位数的除法奠定了扎实的知识和思维基础。通过学习,让学生在活动中理解笔算除法的算理,探索用竖式计算的合理程序。教科书安排了两个例题,例1是一位数除两位数,被除数的各个数位上的数都能被整除,主要解决除的顺序和竖式写法的问题;例2也是一位数除两位数,但除到被除数十位上有余数。本节课内容,对学生进一步学习笔算除法有着非常重要的作用。2.教材的重点和难点:重点是理解算理,掌握算法.掌握笔算除法的步骤和商的书写位置。难点是让学生理解每求出一位商后,如果有余数,应该与下一位上的数连在一起继续除的道理。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)