活动准备:户外活动场地,录音机,发出声响的物品,诗歌字卡,坐垫,黑板,记录表,笔,诗歌图卡活动过程:1、预先告诉幼儿待会儿要去公园散步,请幼儿仔细听一听、闻一闻、看看散步的路上有什么发现。2、组织幼儿安静入坐,游戏:猜一猜,帮助幼儿回忆各种感官(眼睛、耳朵、鼻子、嘴巴、皮肤),让幼儿想想,他们可以做些什么事情?3、请幼儿闭上小眼睛,静静的听,一段时间后,让幼儿说说他听到了什么。
2、在想象创造各种图象中体验有体貌地招呼同伴的快乐。 活动准备:谜语、绘画工具 活动过程:一、猜一猜导入活动:在纸的中央画一个大的椭圆,在纸的一角画一个小的椭圆。边介绍:在草地中央住着一个大蛋,在草地角落住着一个小蛋,大蛋非常想念小蛋,就从前门接一根电话线打电话给小蛋说:“小蛋,你好!”小蛋也非常想念大蛋,就从后门接一根电话线给大蛋说:“大蛋,你你好!”原来大蛋和小蛋都不是蛋,猜猜它是什么动物?
活动步骤:1、请幼儿观察玩具桌上的各种玩具?教师和幼儿讨论:去玩具超市买具 要用什么?幼儿回答用钱。2、引导幼儿认识人民币一角,五角,一元,五元,十元.3、教师小节: a、一角钱的特征是背面有个国徽,而且国徽的旁边有两个1字,它的颜 色有点棕色,所以它是一角钱,它的正面有两个男人,是在钱的正面 的左边。 、五角钱的特征也是背面有个国徽,并且国徽的旁边有两个5字,它的 颜色有点发紫色,它的正面有两个女人,是在钱的正面的左边,两个 女人分别在头上,耳朵上带着饰品。 c、一元钱的特征是背面有一座长城,在长城的旁边有三个1字,它的颜 色有点粉红色,并且在钱的正面的右边有两个女人分别在头上,耳 朵上带着饰品。 d、五元钱的特征是背面有两座山,中间还夹着一条河,并且在山和河 的旁边还有三个5字,它的颜色以棕色为主,它的正面有两个年龄偏 老的人,老头有胡子脸上有皱纹,年龄稍微比老头小一点的女子是 头上带着帽子,头发编着小辫。 e、十元的特征是正面有一个伟大的领袖毛主席,他的画像挂在北京天 安门上。4、请幼儿扮演售货员,将玩具的标签放在相应的玩具前,认识人民币的面 值?出示各种人民币,请幼儿辨认,说说不同面值的人民币可以买到什 么东西?5、教师扮演售货员请幼儿随意挑选各种玩具,提出买玩具的要求: a、首先有礼貌问售货员你好! 、告诉售货员你要买什么玩具? c、会问所要买的玩具的价钱与如何付款,买完玩具要向售货员说:谢 谢!6、分角色游戏。
2.通过动手尝试让幼儿,体验制作生日蛋糕的快乐。 3.初步让幼儿感受与同伴合作的乐趣。 活动准备: 1.与家长联系好,做好准备工作。 2.收集各种款式的生日蛋糕图片和蛋糕实物模型。 3.材料:泡沫板制作的蛋糕模型每组一个(9个),彩色橡皮泥、皱纹纸等装饰材料若干。 活动过程: 一、课前活动,让幼儿观赏收集各种款式的生日蛋糕图片和蛋糕实物模型。 二、活动第一部分——观看蛋糕师制作“生日蛋糕”的过程。 1.组织幼儿围坐成同字形,欢迎“蛋糕师”。 2.教师交代观看时应注意的事项。 3.幼儿观看蛋糕师制作“生日蛋糕”的过程。 三、活动第二部分——我是“小小蛋糕师”,让幼儿尝试合作“生日蛋糕”。 1.教师介绍准备的材料,激发幼儿合作装饰“生日蛋糕”的兴趣。 2.教师让幼儿分组讨论要如何装饰“生日蛋糕”。(引导幼儿可以用排序的方法、也可以用分类的方法)。 3.幼儿尝试分组装饰“生日蛋糕”。要求幼儿要想办法将 “蛋糕”装饰漂亮。 四、情感体验。 通过谈话让幼儿表达第一次学习做蛋糕的感受;以及第一次与同伴合作的体验。
活动目标:1、 了解民间舞龙的来历,培养乐于助人的情感。2、 体验舞龙的乐趣。 活动准备:1、 故事《耍龙》2、 舞龙图片若干3、 自制草龙、绸带龙各一条4、 锣、鼓人手一只,幼儿学会儿歌《过新年》5、 电视机、电脑、录音机、磁带《金蛇狂舞》 活动过程: 一、 谈话引出课题,激发幼儿兴趣。师:不管天上的太阳,空中的微风,还是地上的花朵,都在想“新年快来了,我们要怎么欢迎他呢?”请幼儿讨论(放鞭炮、敲锣打鼓、舞狮、舞龙)。我们一起来敲锣打鼓欢迎新年快快来到吧!(和幼儿一起复习儿歌《过新年》)
2、学做游戏《跳跳糖》在活动中体验游戏的快乐。 准备:1、跳跳糖一包,跳跳糖头饰每人一个,歌曲图谱一张。2、大幅图“巨人的大罪巴”。3、录音机,磁带录有歌曲“跳跳糖”、“的士高”、《摇篮曲》片断。 过程:(1)学唱歌曲《跳跳糖》1、幼儿园在老师的钢琴边作发声练习。请幼儿吃跳跳糖。提问:吃的是什么糖?吃到嘴里是怎么样的?2、教师唱跳跳糖的歌一遍。提问:吃的是什么名字?听起来是怎样的?
活动组织:一、引导幼儿说说各种鱼的特征1、这几天,小朋友都和爸爸妈妈查了许多关于鱼的资料,你都认识了那哪些鱼?请幼儿自愿展示收集到的图片资料,并做简单介绍。2、引导幼儿观察各类鱼的外形特征。二、激发幼儿作画欲望1、今天认识了这么多的鱼,想不想用笔画一画它们?2、有这么多的鱼,一张小纸可画不了,一个人也来不及画,怎么办?鼓励幼儿想办法合作画画。三、幼儿小组作画,老师巡回指导。1、这么大的纸,画画时要注意什么?2、幼儿作画,提醒幼儿注意画面的布局。
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.
1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.
(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
方法总结:对等式进行变形,必须在等式的两边同时进行,即同加或同减,同乘或同除,不能漏掉一边,且同加或同减,同乘或同除的数必须相同.探究点二:利用等式的基本性质解方程用等式的性质解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的两边都减7,再在等式的两边都除以4,可得答案;(2)在等式的两边都乘以6,再合并同类项,可得答案.解:(1)方程两边都减7,得4x=-4.方程两边都除以4,得x=-1;(2)方程两边都乘以6,得3x-2x=24,x=24.方法总结:解方程时,一般先将方程变形为ax=b的形式,然后再变形为x=c的形式.三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察、操作、归纳等数学活动,感受数学思想的条理性和数学结论的严密性.
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。