3、情感态度与价值观:培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。(三)教学重难点根据以上分析,结合本节课的教学内容和学生的思维特点,我将本节课的教学重点确立为引导学生认识倍数与因数,能在1——100的自然数中,找出10以内某个自然数的所有倍数。而将探索出找一个数的倍数的方法确定为本节课的教学难点。二、说学情五年级的学生观察、分析、概括归纳能力已经逐步形成,他们愿意自己观察、分析、概括整理,找出规律。他们在探索新知识上,主动性比较强,同时他们思维活跃,已具备了一定的探究能力和小组合作意识。并且学生在学习本节课之前,学生学过整数的认识,能熟练运用乘除法运算法则解决相应的乘除法运算,是本节课学习倍数与因数相关内容的基础。
知识与技能:学生通过对鸡兔同笼现象的观察与思考,从中发现一些特殊的规律,掌握解决问题的一般策略——列表;过程与方法:通过列表枚举的方法,积累解决问题的经验,经历列表、尝试和不断调整的过程;情感态度与价值观:在现实情境中,使学生感受到数学思想的运用与解决实际问题的联系,体会到数学的价值;重点:探索列表枚举的不同方法,找到解决问题的有效策略;难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法;关键:发现规律,确定猜测的范围。三、学生学情分析:学生在三年级时已经初步尝试了应用逐一列表法解决问题,还有个别学生会套用公式解决鸡兔同笼问题,但对问题本质理解不透。学生的思维较活跃,有一定的合作学习经验。本节课向学生提供了富有挑战性的学习素材,大大激发了学生探究的欲望。
[设计意图:根据数学来源于生活的新课程理念,课前让学生回家搜集,课中让学生交流,与全班同学资源共享,在此基础上观察身份证上的内容,激发了学生参与学习的积极性。]3、讨论,探索规律。⑴合作讨论。①你们手中的身份证号码有什么相同点和不同点?②谁能介绍一下自已身份证上这些数字号码表示的意义? ⑵学生汇报。学生介绍发现的信息以及它们的含义。[设计意图:这是本节课的重点,为了引导学生探索身份证号码的编排规律,把学生分成4人小组,要求学生利用自己收集到的身份证号码、教材等学习资源,采取观察、比较、猜测等方法,探索身份证号码的编码规律,然后在全班交流学习成果,反馈学习情况,让学生初步了解身份证号码的编排特点。]
a.模仿老师一句一句地,有节奏地读歌词,注意老师手上的木鱼敲打的节奏。b.和老师一起把歌词读一遍,注意强调切分节奏的读法。c.学习歌曲:第一遍,老师一句一句地教学生唱,同时用电子琴弹出旋律。第二遍,老师一边一句一句地教唱,一边做出舞蹈动作,学生在下面模仿。d.学生听老师的电子琴伴奏,齐唱歌曲。2.歌曲演唱:演唱a.“有请我们班的小歌星子喻同学为我们演唱好不好?”b.“我们来组个乐团,怎么样?” c. “那我们的乐团起什么名字好呢?”“叽叽喳喳合唱团。”d. “现在老师宣布,我们的叽叽喳喳合唱团正式开演!”小结:“今天老师很高兴和同学们一起学习《蜗牛与黄鹂鸟》这首歌曲,老师看到了同学们的精彩表演,心里非常感动。在这里,老师希望同学们今后要像蜗牛一样,在学习上或者是生活上,不管遇到什么困难都勇敢面对,克服困难,坚持到底!同学们加油!
接下来请同学们改造这五个句子,变成“如果??,那么??”句式,其实就是一个语文环节中的造句,同学们很活跃,纷纷举手发言。课堂检测练习我用到的是课本221页习题6.2第1、2题,有个别同学会做错,做错点在于对判断还把握不够到位,还有少数同学对定义与命题的理解产生混乱。据此,我提出:定义与命题两个概念该如何区别?同学们举手发言:定义是一个描述性的概念,而命题是判断一件事情的句子。还有同学说道:定义就是一个“??叫??”的句式,命题就是“如果??那么??”的句式。在教学中,学生对定义与命题的把握还是比较清楚的。大部分学生可以口头完成导学案设计的题目。能够迅速的把一个命题转化成“如果?那么?”的形式.利用疑问句和祈使句的特点,判定不是命题的语句.迅速的掌握情况还是比较可以的。
通过活动让学生思考:回答问题。对学生的不同回答,只要合理,就给以认可。设计意图:让学生学会有条理的表述自己的思考过程,理解三种数据都是刻画了一组数据的平均水平。整个授课的过程中,由于问题的难点进行了分解突破,问题的解决水到渠成。同时要学生意识到:学会用数据说话,科学地分析身边的事例。5.归纳小结,巩固提高。(1)列表对比平均数众数中位数概念注意点(2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际进行选择,对于同一份材料,同一组数据,不同的目的,应选择不同的数据代表。因从不同的角度进行分析时,看到的结果可能是截然不同的。作为信息的接受者,分析数据应该从多角度对统计数据作出较全面的分析,从而避免机械的,片面的解释。
学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)= 四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 五、课堂小结,回顾新知1. 利用树状图和列表法求概率时应注意什么?2. 你还有哪些收获和疑惑?
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
五、回顾总结:总结:1、投影、中心投影 2、如何确定光源(小组交流总结.)六、自我检测:检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系?七、课后延伸:延伸:课本128页习题5.1八、板书设计投影 做一做:投影线投影面 议一议:中心投影九、课后反思本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
(三)活动:我的班徽我设计1.同学们班级就是我们快乐的家,下面我们一起为这个家设计一个班徽,好吗?2.师:要想设计好班徽,首先我们就要了解什么是班徽?(学生交流)3.班徽的确应该是一种有着特殊含义的图案。让我们先来看两幅班徽设计图。(出示教科书第38页的班徽设计图)你能说说他们设计的图案代表了什么意义吗?4.那咱们班具有什么特点呢?什么样的班徽最能突出这一特点呢?(学生交流看法)5.教师根据学生回答归纳班徽设计要求。(板书:体现班风和特点,设计新颖有创意)6.师小结:刚才我们讨论了对班徽的设计要求,下面同学们可以分组进行设计,设计完后要讲出自己设计的班徽含义。(播放轻松背景音乐,学生按要求分组设计,教师巡视指导)
师:你们还知道哪些地方没有保持安静的标志,同样需要我们小点儿声?(校园的走廊、电梯、商场、餐厅等) 师:孩子们都有一双善于发现的眼睛。能够找到我们身边需要保持安静的场所。不论是学校、公园还是商场、银行。这些地方都是公共场所,虽然没有保持安静的的标志,我们也要小点儿声。那么,是不是这些地方我们就不能说话了呢? 5、课件出示电梯场景 师:这,是我们非常熟悉的电梯。丽丽和她的2个伙伴正乘坐电梯去上班,这时候他们可以聊天吗?为什么? 师:当电梯来到11楼,又进来的2个人,这是他们应该怎么做呢? 生:调节自己聊天的音量,不打扰其他人乘坐电梯。 师:公共场所不是不可以讲话,只是要根据实际情况调节自己的音量,不影响他们,就是文明的行为。
一、说教材:《别伤着自己》是《家中的安全与健康》单元里的第3 课。本课侧重 让学生了解家庭生活中常见的安全问题,形成基本的安全意识,是单 元目标的重要内容。 同时,侧重引导学生主动学习防范意外伤害的方 法,发展自我保护的意识和能力。在日常生活中,危险无处不在,儿 童意外伤害事故屡见不鲜, 皆因儿童缺乏安全防范意识和自我保护能 力。所以,让学生初步了解日常家居生活中常见的安全问题,提高自 我保护意识,是学生形成自我保护能力的重要内容之一。《课程标准》 对于新入学学生的自我保护意识和能力培养有明确要求《课程标准》 的课程目标中提出了需引导和帮助学生学会掌握自身 生活必需的基本知识和基本技能”。课程内容中也明确了相应的学习 指导内容:“健康、安全地生活”的第8 条“使用玩具、设备进行活 动时,遵守规则,注意安全”,第9 条“认识常见的交通标志和安全 标志,遵守交通规则。
二、说教法和学法。根据以上教材的分析及一年级的小朋友刚刚入学,在情感态度、行为习惯方面都很幼稚,学生自控能力比较差,有意注意的时间较短,但学生好奇心强、活泼好动,善于模仿的特点,特确定以下教法和学法:1.教法实践体验法2.学法活动体验法3.教学准备课件,图片等三、说教学过程。(一)导入。歌曲《每当我轻轻走过老师窗前》(二)基础训练:填一填。早上遇见老师,我会说:“ !”早上遇见同学,我会说:“ !”老师:上课,同学们好!学生:老师:下课,同学们再见!学生:(三)能力提升:画一画,你最喜欢的老师,请好朋友猜一猜。这是我们的( )老师。(四)小制作:我要学着制作一张精美的贺卡,写上最美的语言,祝福我最喜欢的老师。