2、初步体验数字在生活中的作用以及与人们生活的关系。 活动准备:收集马路边的数字照片、PPT、录像 活动过程:一、说一说(交流照片,引发幼儿对马路边数字的兴趣)出示幼儿收集的照片1、幼儿互相交流2、集体讨论3、小结
2、通过游戏培养幼儿对数学活动的兴趣;活动重点:复习认识以上三种图形;活动难点:掌握以上三种图形的特征;活动准备:用圆形、三角形、正方形拼成的小鱼图片,场地上画三个大的圆形、三角形、正方形。
2、鼓励幼儿能运用自己已有的经验,通过对圆和圆的不同状态的想象与组合,创作出各种小动物的造型。 活动准备:1、会翻跟斗的圆圆一个、教师范例镜框一幅。 2、各种大小颜色不同的圆若干、水彩笔、固体胶、幼儿用小镜框人手一个。 活动过程:一、看看讲讲,寻找圆圆,体验变身的圆圆◎ 重要提问:1、在我们生活中有哪些东西也是圆圆的?2、 “圆圆”在哪里?它变了以后又躲在哪里?3、教师追问:“半圆形或扇形还能变成什么?”教师小结:原来,调皮的“圆圆”有时是圆圆的,当它翻一个跟斗时,能让自己变成半圆,如果翻两个跟斗就能让自己变成一把小扇子,“圆圆”的本领可大了。
2、继续学习正确目测6以内的数群。3、乐意主动的讲述自己的操作过程和结果。活动准备:1、经验准备:幼儿已认识过数字,并乐意用目测数群的方法进行数数活动。2、物质准备: (1)教具:分类底版,6以内的实物卡片,相应数量的数卡 (2)学具:聪明的玩家(分类底版,6以内的各种实物卡片,相应数(点)卡等) 给一样多的发花(不同排列形式的实物操作卡,雪花片) 一样多的放一起(6以内不同排列形式的实物卡片)
2、培养幼儿的观察力、判断力和思维的敏捷性。3、学习9以内数的点数,按数取物,分类计数。 [活动准备]1、大图画4幅,每幅画有房子4间。塑料几何图形片若干。2、画有9只小兔的背景图1幅,分类计数表1张,磁性数字卡0——9,磁性黑板。3、玩具保龄球2袋。
三、准备: 1、幼儿人手一张记录卡; 家里的数字: 2、课件制作:我的家 课件一:家里的各种物品(鞋、桌子、椅子、茶杯、玩具、电视机等物品)。 4 6 5 3 2 1 课件二:厨房、客厅、卧室。 三、过程: 观看录像一)、认识数字,理解6以内各数字的实际意义: 1、幼儿交流记录卡,说说在家中发现了哪些数字? A、直观的数字(数序):如、电话上的数字、钟上的数字、电器上的数字;
2.积极参与讨论活动,大胆讲述自己的意见。活动准备:6的分合卡片,分类图一张。记录单、记号笔幼儿人手一份。 活动过程:1、复习5以内数的组成(1)游戏:碰球游戏前,由教师确定碰几球,如碰5球。教师问:“嗨,嗨,我的1球碰几球?”幼儿答:“嗨,嗨,我的1球碰4球?”速度可随着幼儿的熟练程度逐渐加快。游戏先集体后个人。
二、活动目标:1、认识5以内的序数,学习序数词“第几”。2、能从不同的方向找到物体排列的位置。3、发展观察能力、判断能力,提高动手操作能力。三、活动准备:1、有5层高的楼房背景图一幅,幼儿熟悉的小动物5个,如小狗、小猫、小兔、小猪、小猴等。2、幼儿每人一份操作材料:5只不同的小动物,有5节车厢的火车或有5棵小树的图片等。
一、活动目标自信是成功的必要条件,是成功的源泉。相信自己行,是一种信念。自信是人对自身力量的一种确信,深信自己一定能做成某件事,实现所追求的目标。本次班会以自信为主题,提升同学们在日常生活和学习中的自信心。二、活动准备全班同学预先学会唱《明天会更好》这首歌两位同学准备好小品,电脑,vcd,活动道具等三、活动过程:1.班主任致辞:我们班是一个团结友爱,上进的班级,同学之间的感情深厚。为了我们在以后的日子里更好的学习,深刻了解自信重要性,我们班特地搞了这次的主题班会。下面宣布主题班会开始。2.男女主持人发言,宣布主题班会开始。3.全班合唱明天会更好。(充分利用电脑,vcd带唱)4.通过演小品。分清自信,自卑,自大,充分说明自信的重要。5、举例说明怎样建立和加强自己的自信心。
[幼儿分析] 中班的孩子正是对自己身边的周围事物感兴趣的时期,语言表达不是很完整,也没有什么主见。经过教师的引导和帮助,他们也能将事情做的很好。因此,在活动时,为他们提供一些蕴涵教育目标的,适合他们的材料,让孩子主动参与、积极探索,通过活动,发展孩子的思维,鼓励他们从不同角度思考问题。 [设计思路] 幼儿喜欢探究生活中的数学现象,对长方形、梯形、半圆形、椭圆形产生兴趣和好奇心,为了开展分类、排序等探索活动在生活和游戏中运用已有的经验进行大胆联想和创造;幼儿还需要在各种操作时间中进一步学习、发现,为此设计了本节活动。 [活动目标]1、培养幼儿对拼图添画的兴趣。2、发展幼儿想象力和创造力。3、引导幼儿在认识几何图形的基础上,通过联想画成简单的物体,并表现出其主要特征。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
一是做服务上的“有心人”,把参谋辅政当成一种责任、一大信念政府办公室属于政府系统的“参谋部”、“指挥部”和“后勤部”,处于承上启下、协调左右、沟通内外、联系各方的核心、枢纽、“心脏”地位,作用非常重要,责任非常重大。这就要求我们牢牢把握职能定位,切实充当服务上的“有心人”,把参谋辅政当成一份责任、一种信念,尽心尽力地当好参谋助手。
当好“三个角色”,落实会议决定。当好工作落实的“推动者”。会后,联席会议成员单位及时向有关市级领导同志汇报会议研究的事项。市委办公室按会议要求督促跟进抓好落实,阶段性汇报工作推进情况。如,2022年第三季度联席会议提出,市委办公室、市委宣传部、市委政法委等单位要相互协调配合,共同做好重要紧急信息报送工作。会后,我们立即联合会商,研究健全全市重要紧急信息报送联动机制,并组织专题培训班,进一步提升重要紧急信息报送质效。当好工作安排的“调度员”。市委办公室认真研究、吸纳会上各单位提出的意见建议,按照会议部署的工作要求,对当前季度市委工作计划和活动预案进行优化调整,按照“月调度、周部署、日安排”方式高效调度,有序推动全市各项工作。
当好“三个角色”,落实会议决定。当好工作落实的“推动者”。会后,联席会议成员单位及时向有关市级领导同志汇报会议研究的事项。市委办公室按会议要求督促跟进抓好落实,阶段性汇报工作推进情况。如,2022年第三季度联席会议提出,市委办公室、市委宣传部、市委政法委等单位要相互协调配合,共同做好重要紧急信息报送工作。会后,我们立即联合会商,研究健全全市重要紧急信息报送联动机制,并组织专题培训班,进一步提升重要紧急信息报送质效。当好工作安排的“调度员”。市委办公室认真研究、吸纳会上各单位提出的意见建议,按照会议部署的工作要求,对当前季度市委工作计划和活动预案进行优化调整,按照“月调度、周部署、日安排”方式高效调度,有序推动全市各项工作。
《总也倒不了的老屋》是三年级上册第四单元的第一篇课文。课文主要描写了老屋帮助了很多人,为他们遮风挡雨的故事,赞扬了老屋的爱心和他的善良品质。本课的重点是通过感情朗读,理解课文内容,引导学生联系上下文,体会老屋善良、富有同情心的美好品质。本课的难点是学习预测故事,续编故事。课文用反复的手法推进情节的发展,各部分情节具有相似性,教学过程中可引导学生关注相关内容,这也可以为学生预测故事的发展提供方法上的引领,尤其是对老屋和小动物的语言、动作和心理等细节描写的相似为学生提供预测的依据。
一、知识与能力:(1)了解中国古代不同时期的文学特色;(2)了解、诗,词、歌、赋等各种不同的知识内容和形式,知道和掌握一定数量的名家作品;(3)拓宽文化视野,提高赏析和运用古代文学作品的能力。二、过程与方法:(1)通过教科书及教师提供的材料以及自己的日常积累,通过阅读,讨论,分析,评论了解各个不同时期的文学发展特色。(2)通过阅读,观察,练习,欣赏,表演,评论,创作等方式积极参与教学;通过独立思考或合作学习对所学的内容进行比较,概括和阐释;学会合作学习和相互交流。三、情感态度与价值观:通过本课学习,了解中国古代灿烂的文化。通过对文学家、诗人及其文学作品的分析,把学生带进文学艺术的殿堂,感受古人的呼吸,思想,情操。增强文化修养。