教学过程:(一)创设情景、借景导入。以音乐《原始狩猎图》的“引子”作为导入,随着我的描绘补充演绎出完整的远古人狩猎的场景,使学生感受出音乐的古朴音调、神秘和粗犷的音乐风格及独特的音响色彩。(二)探访远古、艺术再现。1、欣赏关于远古时期的壁画、岩刻。内容包括:动物、放牧、舞蹈、战争等。绘画手法:壁画一般是勾线涂色;岩刻一般是敲凿和磨刻。绘画工具:壁画用的是苔藓类植物、兽毛,颜料是动物的脂肪和血调和的天然矿物;岩刻用的是石头。2、讨论:远古人为什么会将这些动物刻画在岩石或洞穴中呢?远古人或是为了了解生活中的动物,或是为了记录某一次打猎的过程,或是为了记录每次打猎的成绩,或是为了祈求明天能打到更多的猎物等等原因。3、了解古代的一些乐器(埙、骨哨、骨笛等,链接音频)。(三)欣赏音乐、探究讨论。1、聆听音乐骨哨与乐队《原始狩猎图》之“狩猎”。(1)想想音乐所表现的画面情景。(2)说说乐器“骨哨”和“埙”的音色特点。(3)谈谈听完音乐后的感受。
教学过程:(一)认真聆听这首音乐,配合老师展示的一些关于原始人类狩猎的图片逐渐进入情境。(二)完整欣赏、借景抒情。1、聆听钱兆熹的骨哨与乐队《原始狩猎图》之“庆功”和“尾声”,让学生根据音乐,描绘出想象中的狩猎后古人们跳舞欢庆和散去的场景。2、欣赏花山岩画、舞蹈纹彩陶盆。3、模仿古人的舞蹈动作,简单的举手、手拉手等动作。4、分析乐曲的结构:引子——狩猎——庆功——尾声。5、探究讨论、情感抒发。(1)音乐与情景内容是怎样结合在一起的?(2)古代人为什么要聚在一起狩猎?对我们有什么启发?(3)体会艺术与生活的关系、集体主义精神。(三)艺术拓展、电影与古乐。1、电影《菊豆》与陶埙。2、编钟、编磬。让学生观看影片中配有乐器音乐的片段,在声音与画面,音乐与内容的交互中熟悉古代乐器的声音、音乐的内涵及古乐的魅力。(四)师生总结、情感升华。乐曲采用简洁朴素的音乐语言,充分发挥了骨哨独特的音色和淳朴的艺术魅力,展示了一幅远古时期人们在夜幕中狩猎的画面,把先民们从发现猎物时的激动心情到捕获猎物后的狂喜场面刻画得栩栩如生。谁说国乐不如洋?中华五千年灿烂文明,中国古典音乐有着极高的艺术境界。热爱国乐吧!因为它是我们的母体文化之一!
教学过程:一、导入同学们,你们知道“迈克尔杰克逊”吗?迈克尔·杰克逊(Michael Jackson),1958年08月29日在美国印第安纳州加里市出生,美国歌手、词曲创作人、舞蹈家、表演家、慈善家、音乐家、人道主义者、和平主义者、慈善机构创办人。1982年12月,杰克逊音乐生涯最畅销的专辑《Thriller》发行。1987年9月,杰克逊展开个人首次全球巡演。通过舞台和视频的表演,杰克逊普及了一些像机械舞和太空步等舞蹈技术。杰克逊一生中两次入选的摇滚名人堂,获得了13个格莱美奖和26个全美音乐奖。在他单飞生涯中,他拥有13支美国冠军单曲。2000年吉尼斯世界纪录大全里认证他资助过39个慈善机构。二、新课教学1、播放《拯救地球》初次聆听,谈谈你的感受。2、简介歌曲来源及故事背景1991年创作,Heal The World 是为了配合迈克尔自己的同名慈善组织所作,Heal the world是一首呼唤世界和平的歌曲,相当优秀,歌词倡导人们保护和珍惜我们的环境,让战争远离,世界和平,我们的心中都有一个地方,那就是爱,让我们营造一个没有战争、没有荒地,生机勃勃,到处充满了温暖和关怀的世界,让孩子们可以自由的欢笑,让世界充满爱。
教学目标:欣赏《月牙儿五更》器乐和声乐曲各有什么特点?教学重、难点1、重点:欣赏《月牙儿五更》,感受民歌改编的器乐作品。2、难点:比较《月牙儿五更》器乐和声乐表现形式的特点。教学过程:一、导入1、根据课题《神州音韵》,导入我国幅员辽阔,拥有多样的地形地貌和复杂的地理环境。同时,我国还是个拥有五十六个民族的大家庭,人们在生活中创造了丰富多彩的民族民间音乐。本节课,我们所学习的音乐都是我们国家的民族音乐。2、同学们对我国的民歌有多少了解?同学讨论,老师补充。二、欣赏《月牙儿五更》1、本节所欣赏的是板胡独奏《月牙儿五更》,所以先了解乐器板胡,看图片,了解板胡的构造。2、聆听与思考:很多优秀的民歌被作曲家改编成了器乐曲,试比较《月牙儿五更》器乐和声乐表现形式各有什么特点?三、结束希望同学们在以后的生活中多了解、喜爱我们的民族音乐,感受民族音乐的独特魅力。
教学过程一、导入教师:同学们,今天老师要带领大家到东北地区,去欣赏东北民歌。二、新课教学1、教师:关东支脉音乐的体裁形式和风格特点与齐鲁燕赵支脉有许多相同之处,但又形成了自身的特点。接下来我们通过几首有代表性的作品来找出关东支脉音乐的风格特点。2、教师播放《月牙儿五更》,请学生思考这首歌曲属于音乐民歌中的哪一种。学生回答回忆上节的知识。3、教师:大家能不能说出这首《月牙儿五更》是由什么乐器演奏的呢?学生回答。教师:板胡是我国弓弦乐器。音箱不是蒙以皮革,而是盖上薄的木板或椰壳,形似碗状,琴干琴弓比二胡粗;音色高亢嘹亮。下面我们来听两段音乐,请大家分辨一下是二胡的音色还是板胡的音色。学生回答。4、教师:下面,老师给大家介绍一位男高音歌唱家郭颂,郭颂演唱了很多优秀的民歌,我们来欣赏一首由他演唱的《月牙儿五更》。学生欣赏乐曲教师:由此我们可以看出很多器乐作品都源于优秀的民歌,民歌是我们源于创作的源泉。让学生了解民歌是音乐创作的源泉。三、课堂小结教师:同学们,今天这节课我们欣赏了关东支脉地区的音乐,我们了解了它的风格特点,也了解了很多的音乐创作都来源于民歌。希望在课下,同学们能够多去了解欣赏民歌,让民歌的灿烂文化一直发扬光大。
2、发展幼儿的想象力和初步的合作能力。二、活动重点:根据纸盒外形想象装饰。三、活动难点:用装饰、拼搭的形式表现出自己的家。
一、导入。1. 组织游戏《猜猜我是谁》,请幼儿闭上眼睛用手触摸被猜幼儿的脸,然后说出被猜幼儿的姓名,并引导幼儿说说你是怎么发现的。(如,他的脸比较长、他的眼睛很大、她的嘴巴很小等。)2. 请幼儿说说你喜欢的人是谁,他长的什么样?引导幼儿说出人物的典型特征。3. 幼儿仔细观察自己喜欢的人的脸,再与画册中的人物相比较,看与哪一张脸相同。4. 请幼儿为自己喜欢的人画一张像,引导幼儿把人物的典型特征表现出来。二、作画。1. 幼儿开始作画,教师为作画有困难的幼儿做指导。2. 出示范画,请幼儿欣赏并说出范画中人物的典型特征。引导幼儿抓住典型特3. 征大胆表现。
二、活动目标:1.初步认识、了解消毒、预防非典的物品,扩展有关“防非”的知识。 2.在购物过程中尝试解决简单的数量问题。 3.满足幼儿为妈妈做事的愿望。三、活动准备: 1.防非物品、其他食品包装盒。 2.每一物品上贴上价格标签(5以内) 3.购物篮,自制纸币。四、活动过程:(一). 导入 “母亲节”我们想了很多办法为妈妈做事,现在“母亲节”过了,我们还要为妈妈做事吗?为什么?(二). 启发游戏 1. 以妈妈的烦恼(妈妈想买预防非典的消毒等用品和增加抵抗能力的食品,可是妈妈上班没时间)启发幼儿帮妈妈购物。
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?