提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大初中七年级数学下册多项式除以单项式教案

  • 第十七周国旗下讲话稿:关注细节,成就人生

    第十七周国旗下讲话稿:关注细节,成就人生

    各位老师、同学们:大家上午好!今天我国旗下讲话的题目是:关注细节,成就人生。许多成功者的经历告诉我们,成就一件大事,所需要的不仅仅是豪情壮志,不仅仅是持之以恒,还需要注重每一个小的细节。正是这些微乎其微的细枝末节,造就了令万众称赞的名人伟事。我们可以把自己看成是真善美与假恶丑并存的世界来审视一下自己。因为凡人都有欠缺,只有我们不断审视自己,反省自己,真诚而勇敢面对自身的缺陷,才能不断改正、完善自己,才能让自己积蓄起深厚的文明和文化素养。我们也可以审视一下自己的日常行为规范和礼仪常规,审视一下自己的仪表仪容,审视一下内心深处做人的原则,加强人品的自我修养和塑造。中国教育改革家魏书生在总结教育与习惯时说:“行为养成习惯,习惯形成品质,品质决定命运;”“教育就是帮助人养成良好的学习和生活习惯”。自古以来,人才之上,人品至本,大凡有成就的人,都有一个良好的习惯,这些习惯,使得他们有着鲜明的个性、顽强的毅力和良好的品质。可以说:习惯主宰人生,习惯决定命运。

  • 买卖合同(七)

    买卖合同(七)

    第一条 其产品名称、规格、质量(技术指标)、单价、总价等,如表所列:材料名称及花色 规格(毫米)及型号 质量标准或技术指标 计量单位 单价(元) 合计(元)第二条 产品包装规格及费用 第三条 验收方法 第四条 货款及费用等付款及结算办法 第五条 交货规定1.交货方式: 2.交货地点: 3.交货日期: 4.运输费: 第六条 经济责任1.乙方应负的经济责任(1)产品花色、品种、规格、质量不符合本合同规定时,甲方同意利用者,按质论价。不能利用的,乙方应负责保修、保退、保换。由于上述原因致延误交货时间,每逾期一日,乙方应按逾期交货部分货款总值的万分之 计算向甲方偿付逾期交货的违约金。(2)乙方未按本合同规定的产品数量交货时,少交的部分,甲方如果需要,应照数补交。甲方如不需要,可以退货。由于退货所造成的损失,由乙方承担。如甲方需要而乙方不能交货,则乙方应付给甲方不能交货部分货款总值的 %的罚金。

  • 调皮的七彩光说课稿

    调皮的七彩光说课稿

    今天我选定的课题是幼儿园大班语言《七彩世界》主题里的一个语言教育活动《调皮的七彩光》,下面,先说说我的设计意图。经历了小班、中班的学习过程,大班幼儿的求知欲更强了,他们不但对五彩缤纷的颜色十分喜爱,而且更对五彩缤纷的自然界充满了好奇心,他们会由自然界中红彤彤的苹果、黄澄澄的梨、蓝蓝的大海、绿绿的草地等景象的观察及认识引发出更深一步的思索:大千世界为何会有这么多的颜色?这些美丽的颜色是怎么来的?……  通过《调皮的七彩光》这个故事就可以让幼儿知道:色彩来源于光的作用,是调皮的七彩光娃娃从天空来到地上“玩”出来的。我们的身边处处都有七彩颜色。有了七彩颜色,画画更美丽,打扮东西更漂亮,游戏起来更有趣。本活动有利于帮助幼儿成为色彩世界的探究者,发现自然界中的许多奥秘,培养幼儿对自然界探究的欲望和对生活的热爱,感受生活的乐趣。

  • 《七律 · 长征》说课稿

    《七律 · 长征》说课稿

    能正确、流利、有感情地朗读课文,背诵课文,并学习生字,积累词语。???????????????(2)过程与方法目标:借助多媒体课件等资源,创设情境,引领学生自主探究,互动交流,在读中理解,读中感悟。? (3)情感态度与价值观目标:体会红军大无畏的英雄气概和革命乐观主义精神。? ?三、说教学重难点:? 1.抓住重点诗句品读感悟,体会红军大无畏的英雄气概和革命乐观主义精神。?2.理解本诗高度的艺术概括性和极度夸张的手法。?四、说教法这首诗的时代背景是红军长征时期,离学生的生活年代比较远,学生要把握诗中的思想感情有一定的难度。根据学生实际情况和课文特点,我主要采用“情境教学法”和“朗读体会法”,即通过反复朗读,让学生读出诗的韵味,在读中理解诗意,在读中感受毛主席及其领导的中国工农红军大无畏的革命精神和英勇豪迈的气概,达到熟读成诵的效果。另外,利用创设情境法,将学生带入特定的历史背景中,让学生合作学习、小组交流,为学生营造了一个和谐的课堂氛围。

  • 七十岁生日宴会上的讲话发言稿

    七十岁生日宴会上的讲话发言稿

    欢歌笑语送奥运,更喜华诞古来稀.今朝有酒醉意浓,青霜不老千年松.父亲今天七十岁了,说句心里话,还是第一次如此用心的为父亲过生日,俗话说四十不惑,可我们永远需要父亲的教诲,今生受益不尽,今生感激不尽.父亲七十岁了,望着父亲那满头的银发,我的心情久久不能平静,那是岁月路途的艰辛,那是汗水智慧的结晶.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 人教版高中数学选修3二项式系数的性质教学设计

    人教版高中数学选修3二项式系数的性质教学设计

    1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (1) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (1) 教学设计

    新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (2) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (2) 教学设计

    二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和

  • 大班数学教案:认识10以内的单双数

    大班数学教案:认识10以内的单双数

    活动目标: 1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数; 2、培养幼儿从身边事物中发现单双数的能力; 3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。活动准备: 2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料活动过程:一、情景导入,引起兴趣 瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?二、在购物游戏中体验、感知单双数 1、教师讲解游戏规则。 数一数,你有几元钱?圈一圈,你能买几样东西? 2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。三、在交流与比较中理解单双数 1、讨论:你有几元钱?买了几样东西?还有钱多吗? 2、回收代用券:还剩一元的小朋友把代用券送到一边,都用完的送到另一边。 3、集体检验,解决问题:“1”该送哪边? 4、教师小结: ①像1、3、5、7、9这样两个两个地数,总会剩下一个的数叫单数;2、4、6、8、10这样都能凑成2个2个的数叫双数。 ②10以内有5个单数,也有5个双数。 ③单数挨着双数,双数挨着单数,它们手拉手,都是好朋友。

  • 大班数学教案:区别10以内的单双数

    大班数学教案:区别10以内的单双数

    2.激发幼儿参与数活动的兴趣,培养幼儿积极思维的能力。 活动准备:1、一定数量的卡通玩具。1—10的数字卡片若干。 2.自制小奖品和金钥匙若干。 活动过程:1、介绍“中奖游戏”。 (1)提问:“什么叫中奖?”老师解释,帮助卡通宝宝找朋友。如果帮它们都 找到了朋友(指都找到了一对一对卡通玩具),就算中奖,能得到奖品。 如果其中有一个卡通宝宝找不到朋友,则不能得到奖品,也就是没有中奖。 (2)讲解游戏规则。 每人请出若干数量卡通宝宝来做游戏。分成弟弟妹妹两队,进行比赛。提示幼儿可用已经玩过的非正式活动中“圈一圈”游戏的方法,来玩中奖游戏。 2.第一轮游戏将幼儿分成两队进行,理解双数和单数的意义。 (1)第一轮比赛结束后,引导幼儿讨论:他们能不能中奖?为什么?加深对游戏意义的理解。即:帮助卡通宝宝找到朋友,就能中奖,反之则不行。 (2)第二轮比赛后,引导幼儿讨论:为什么弟弟队(或妹妹队)总是能中奖?让幼儿知道游戏中“请多少数量的卡通宝宝”是能否中奖的关键。 小结归纳:遇到2、4、6、8、10的数量的卡通宝宝都能找到朋友,也就都中奖。遇到1、3、5、7、9的数量的卡通宝宝都会剩下一个找不到朋友,所以不能中奖。 (3)认识2、4、6、8、10是双数;1、3、5、7、9是单数。

  • 大班数学教案:大嘴巴比多少(10以内数)

    大班数学教案:大嘴巴比多少(10以内数)

    活动准备:教具:大的点点比较图三张,方格纸,数字(1—9),符号“〈”“〉”。学具:“大嘴巴比多少”(2组12套),每个幼儿2张,每张作业上包括点点比较图和方格纸;符号“〈”“〉”;水彩笔6支;印台每组2个,数字章1—9。配组学具:回形针拼图形(1组);数字脸谱连线(1组);大嘴巴比多少(1组提高型)。 活动过程:一、玩游戏,复习有关数量关系1.玩拍手数数游戏(1—20):集体。2.序数游戏(1—10的接数):集体、小组、个别。3.根据点卡上的点子数做动作:集体、个别。

  • 市领导在全市重点项目集中开工仪式上的讲话

    市领导在全市重点项目集中开工仪式上的讲话

    项目开工只是开端,加快推进、建成投产才是关键。全市上下要进一步强化“项目为王”理念,坚持项目工地就是阵地、现场就是考场、进度就是尺度,一切围着项目转,紧紧盯着项目干,以严的要求、实的作风、优的服务做保障、强支撑。要高强度推进项目,各县市区、市直部门要坚持一线办公、一线协调、一线督促,调配资源,集中攻坚,全力保障项目建设。各建设单位要坚持安全第一、质量为先,争分夺秒,争取项目早建成、早投产、早达效。要高水平服务项目,切实优化提升营商环境,主动对接服务,提升办事效率,合力解决难题,当好“店小二”、做好“服务员”

  • 部编人教版一年级上册《项链》说课稿

    部编人教版一年级上册《项链》说课稿

    四、说教学重难点1.正确、流利地朗读课文,能合理搭配“的”字词语。(重点)?2.感受大海的美丽,知道大海的项链是什么,体会小娃娃海边玩耍的快乐。(难点)五、说教法和学法俗话说:”教无定法,贵在得法”。教学是师生之间、学生之间交往互动、共同发展的过程。建构主义理论强调以学生为中心,强调学生对知识的主动探索、主动发现和对所学知识的主动建构。在教学这一过程中,学生是学习的中心,教师在整个教学过程中起组织者、指导者、帮助者和促进者的作用。? 因此,遵循学生的认知规律,突出教师为主导,学生为主体的教学原则,本节课主要采用学案导学、闯关游戏、小组竞赛的方式进行学习。教师主要为学生创设问题情境,引导学生在对话、讨论、交流中觅取新知,启发、点拨学生通过分析人物的心理描把握人物形象、领悟小说主旨。为了提高课堂学习效果,主要利用多媒体课件和学案来进行教学。

  • 教师在XX中学暑期师德师风专项巡查和整治工作总结

    教师在XX中学暑期师德师风专项巡查和整治工作总结

    学校还设立举报箱公布举报热线暑期安排值班人员及时收集有关教师师德师风情况的反馈息。从多角度、多渠道强化师德师风建设每位教师都受社会和人民的监督。五、严格查处有偿家教根据教育局规定严禁教师从事有偿家教。除了会议上多次强调以外我校教师还签订“关于拒有偿家教”的承诺书。同时师德师风专项巡查和整治领导小组利用暑假期间不定期深入群众中去通过走访调查、实地考察等途径实时掌握我校教师是否存在“有偿家教”的问题一经发现及时制止并汇报教育局。至今止我校并未发现有师从事有偿补课的现象。总之通过狠抓师德师风建设工作使学校教师深深体会到只有制度完善、强过程管理发现问题及时处理才能证师德建设有成效。这次暑期师德师风专项巡查和整治以法制学习教育和组织教师进行自查依托以“以法治校”的制度管理、科学评估、重在激励手段形成良好的教师队伍树立教师的职业道德形象。

  • 人教A版高中数学必修一等式性质与不等式性质教学设计(2)

    人教A版高中数学必修一等式性质与不等式性质教学设计(2)

    等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

上一页123...288289290291292293294295296297298299下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。