有人说:人的一生有三天:昨天、今天和明天,这三天组成了人生的三步曲。但我说,人的一生只是由无数的今天构成的,因为不会珍惜今天的人,既不会感怀昨天,也不会憧憬明天。乐观的人,喜欢描述明天的美好前景;悲观的人,总担心明天会发生什么不测。但生命的内涵只在于今天,生命是宝贵的,它是由一分一秒的时间堆积而成的,珍惜今天就是珍惜生命,荒废了今天就是荒废了生命。昨天已是过眼云烟,再也无法挽留。如果在昨天,你为取得了一点骄人的成绩而沾沾自喜,或是因为做错了一件事情而愁眉不展,那么你就永远陷进了昨天的泥潭里。同时,你今天的时间也会从你的沾沾自喜或愁眉不展中悄悄流逝。每个人都会乘坐“今天”这班车驶向明天,一天一个驿站,一天一处风景,趁着明天还未到来,我们就应抓住今天,这样等待着你的才会是果实累累的明天。
为大家收集整理了《XX中学生国庆节国旗下讲话稿》供大家参考,希望对大家有所帮助!老师、同学们,当我们站在这里,听着雄壮激昂的国歌,目睹着五星红旗冉冉升起,不禁为身为中华儿女而感到自豪。再过几天就是国庆节,在这普天同庆的大喜日子,让我们唱出我们心中对祖国的赞歌。今天我演讲的题目是《我骄傲我是中国人》我骄傲我是一个中国人!我骄傲我拥有这个响亮的名 字,我爱我的祖国!我爱您悠久古老的历史,更爱您壮丽优美的山河,我爱您灿烂辉煌的文化,更爱您顽强不屈的精魂内核。昨天的岁月冲刷着记忆的河床,它会带走青春,带走欢笑,带走泪水,但却无法带走您五千年的积淀!我们以〈〈诗经〉〉的歌喉;以〈〈橘颂〉〉的音韵;以古风与乐章、律诗与散曲;以梆子与鼓词、京剧与秦腔。唱响了您悠久岁月的辉煌,唱出了您壮丽山河的力量!我骄傲我是一个中国人!我是龙的传人,是炎黄的子孙!我骄傲,我的骨子里流淌着中国血。百年屈辱,百年抗争。在被欺侮的岁月里,您经历了太多痛苦的洗礼,也展示了无数奋斗的欣慰!赵登禹手中的大刀;张自忠体外的血肠:杨靖宇腹中的草根。
■ 溺水致死的原因溺水致死的原因主要是气管内吸入大量水分阻碍呼吸,或因喉头强烈痉挛引起呼吸道关闭、窒息死亡。另外,溺水致死的原因还包括:1、大量水藻、草类、泥沙进入口鼻、气管和肺,阻塞呼吸道而窒息。2、惊恐、寒冷使喉头痉挛、呼吸道梗阻而窒息。3、淡水淹溺:大量水分进入血液,血液被稀释,出现溶血、血钾升高导致心室颤动、心 跳停止。4、海水淹溺:高钠引起血渗透压升高,造成严重肺水肿,导致心力衰竭而死亡。 ■ 溺水的症状从人体外部特征判断,溺水者面部通常青紫、肿胀、双眼充血,口腔、鼻孔和气管充满血性泡沫;肢体湿冷、上腹胀满、烦躁不安或神志不清、呼吸不规则、脉细弱,甚至抽搐或呼吸、 心跳停止;肺腔一般有积水,内有泥沙或其他水中的杂质。从医学检查判断,溺水者的肺部罗音、心音弱而不整,淡水淹溺者有血液稀释和溶血的表现,海水淹溺者有血液浓缩和高血钾的 表现,严重者会因心跳、呼吸停止而死亡。
活动目标:1、通过操作,引导幼儿感知丝绸和玻璃摩擦之后,能产生静电的现象。2、引导幼儿迁移运用所获得的感性经验,自制小玩具,激发幼儿探索周围事物的兴趣。活动准备:1、玻璃板、薄纸、大头针、丝绸布料2、在干燥的天气进行活动,因为干燥的天气容易产生静电活动过程:一、组织幼儿认识“小指人”,激发探索的兴趣。1、师:“小朋友,这是什么?”(一张薄纸)师:“现在老师用剪刀剪一下,变成了什么?”(老师剪成几个1.5——2厘米高的小纸人,要使小纸人站立不倒,可以在小纸人中间插上一根大头针)2、师:“可爱的小纸人,请你们给小朋友跳个舞吧!”幼儿发现“小纸人”没有跳舞。师问:“你们能不能想办法让它跳起舞呢?”3、请幼儿用各种办法让“小纸人”跳动,谁想出来的办法好。
2.培养幼儿大胆想象和添画的能力。3.体验运用新的绘画方式进行美工活动的乐趣。准备:1.小人国联欢会场景图一张。2.印有指纹娃娃的画纸,黑色沟线笔人手一份。过程:1.引发兴趣。(1)你们还记得《小人国》的故事吗?今天小人国的小人来我们幼儿园做客了!(请看大屏幕)这是国王,这是王后、公主和其他的臣民。噢,还有乐队呢,看他们跳的多开心啊!这么多有趣的小人是怎么画出了的呢?(2)引出上节课画的指纹娃娃。今天指纹娃娃也想和我们一块来参加晚会。
活动准备: 剪刀、红蓝墨水、杯子、橡皮筋、水。 芹菜、白色花朵(玫瑰或康乃馨。) 活动过程: 做小实验,请幼儿仔细观察植物是怎么喝水的。1、芹菜实验: 将芹菜的茎剪短一些,叶子摘掉一些。 把橡皮筋套在杯子上,再装进一些水,并滴进一些红墨水。 将芹菜插进杯子里,并调整橡皮筋到水面位置做记号。 过一段时间,让幼儿看看水面和橡皮筋的位置是否一样(水面低于橡皮筋),芹菜的茎有什么变化(变红)。
重点难点:·重点:能选用合适的材料做螃蟹·难点:正确表现螃蟹的身体与脚的连接 活动准备:·经验准备:了解螃蟹的特征·物质准备:范例、各种废旧物品及辅助材料,积木搭的蟹塘 活动过程:引导幼儿观察“蟹塘”,激起兴趣1.请幼儿说说螃蟹的外形特征。2.欣赏范例,并组织幼儿讨论:可以用哪些材料做螃蟹? 二、交代活动的要求1.先选好材料,看看哪些材料适合做螃蟹的身体或脚;2.螃蟹身体和脚连接要牢固;3.用过的东西放回原处,同伴之间可以共同完成作品。 三、幼儿制作,教师指导1.启发幼儿选用合适的材料有机的结合,大胆的表现。2.适当的指导螃蟹身体和脚的连接的方法。 四、作品讲评1.请幼儿把作品放在“蟹塘”,相互欣赏,并互介绍自己的材料。2.请幼儿说说谁的螃蟹做的最好,用的材料最巧妙? 延伸活动:将剩余的材料放在美工区供幼儿平时制作。并经常添置,制作其他手工品。
二、活动材料:小动物卡片若干;画有汽车的操作卡人手一份,幼儿记录卡人手一份,糖果盒人手一份;背景图一幅,糖果若干。 三、活动过程:(一)、导入活动再过几天就要过圣诞节了,森林里准备搞一场大型的圣诞舞会,许多小动物都要去参加。看,长长的车队开来了,数数来了几辆小汽车?(6)—出示汽车操作卡。哟,每辆汽车上都有一个6,猜猜看,什么意思?(幼儿自由表述)对了,每辆汽车上只能坐6个小动物。(二)、基本活动1、来,看看你身边的动物卡片,他们一样吗?(数量不一样)2我们小朋友一起帮帮你身边的小动物们,把他们一起送上汽车。记住:每辆小汽车上的小动物的数量合起来一定要刚好是6。幼儿操作活动,教师巡回指导。请幼儿说说,你的车上都坐了哪些小动物。(例:我的第一辆车上坐了一只小白兔,5只小花猫;第二辆车上……)小组交流,个别回答。小朋友说的都很好,现在老师要请你们把送小动物的结果记录下来。看,这是一张记录纸,纸上画的是6辆小汽车,和我们的小汽车排一样的队,(你的第一辆车上坐的是一只小白兔和5只小花猫,你就在第一辆车里写上数字1和5)。
第一条学生干部、干事在团总支、学生会工作期间实行10分制考核。 第二条考核由秘书处具体负责;每学期考核一次。 第三条考核结果的构成 考核结果为民主评议得分与减分项之和,当达到直接除名条件时不予考核
课题序号6-3授课形式讲授与练习课题名称等比数列课时2教学 目标知识 目标理解并掌握等比数列的概念,掌握并能应用等比数列的通项公式及前n项和公式。能力 目标通过公式的推导和应用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、分析问题、解决问题的一般思路和方法 。素质 目标通过对等比数列知识的学习,培养学生细心观察、认真分析、正确总结的科学思维习惯和严谨的学习态度。教学 重点等比数列的概念及通项公式、前n项和公式的推导过程及运用。教学 难点对等比数列的通项公式与求和公式变式运用。教学内容 调整无学生知识与 能力准备数列的概念课后拓展 练习 习题(P.21): 3,4.教学 反思 教研室 审核
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
【教学目标】知识目标:⑴ 理解指数函数的图像及性质;⑵ 了解指数模型,了解指数函数的应用.能力目标:⑴ 会画出指数函数的简图;⑵ 会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴ 指数函数的概念、图像和性质;⑵ 指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴ 以实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 4.2指数函数. *创设情景 兴趣导入 问题 某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,知道分裂的次数,如何求得细胞的个数呢? 解决 设细胞分裂次得到的细胞个数为,则列表如下: 分裂次数x123…x…细胞个数y2=4=8=…… 由此得到, . 归纳 函数中,指数x为自变量,底2为常数. 介绍 播放 课件 质疑 引导 分析 了解 观看 课件 思考 领悟 导入 实例 比较 易于 学生 想象 归纳 领会 函数 的变 化意 义 5
课 程数学章节内容 课程类型新课课时安排2课时指导教师 日期12月 7 日学习目标掌握用弧度表示角度的大小学习重点掌握用弧度表示角的方法学习难点弧度制和角度制的互换回顾(温故知新)1、回顾上节课所学内容:任意角度的推广、终边相等的角的表示方法; 2、已经学过角度的计量单位:度,度分秒是如何换算的; 3、圆的周长公式和扇形弧长公式。问题(顺着问题找思路)1、弧度制:等于半径长的圆弧所对的圆心角叫做__________,记作____弧度或1________。 2、正角的弧度为_____数,负角的弧度为_____数,零角的弧度为零。 3、由弧度的定义可知,当角α用弧度来表示,其绝对值|α|和圆弧长l与圆的半径r有:|α|=________。 4、一个圆的周长为_____,所以一周角(360°)的弧度为_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何将角度制转化为弧度制?如何将弧度制转化为角度制?(结合实例讲解)练习(通过练习固要点)1、练习5.2.1; 2、例3;展示(通过展示强能力)(25分钟)(包括学生展示回顾、问题、练习、小组总结等部分)1、引导各小组展示学习成果,在有各小组长指定小组成员展示,结束后,该组组长须总结或指定其他成员进行总结。 2、展示过程中,提醒同学注意老师的板书,或者请老师进行总结,或题目的讲解。
【教学目标】知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.【教学重点】已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.【教学难点】已知三角函数值,利用计算器求指定范围内的角.【教学设计】(1)精讲已知正弦值求角作为学习突破口;(2)将余弦、正切的情况作类比让学生小组讨论,独立认知学习;(3)在练习——讨论中深化、巩固知识,培养能力;(4)在反思交流中,总结知识,品味学习方法.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 5.7已知三角函数值求角 *构建问题探寻解决 问题 已知一个角,利用计算器可以求出它的三角函数值, 利用计算器,求= (精确到0.0001): 反过来,已知一个角的三角函数值,如何求出相应的角? 解决 准备计算器.观察计算器上的按键并阅读相关的使用说明书.小组内总结学习已知三角函数值,利用计算器求出相应的角的方法. 利用计算器求出x:,则x= 归纳 计算器的标准设定中,已知正弦函数值,只能显示出?90°~ 90°(或)之间的角. 介绍 质疑 提问 引导 说明 了解 思考 动手 操作 探究 利用 问题 引起 学生 的好 奇心 并激 发其 独立 寻求 计算 器操 作的 欲望 10
系(部)医药授课教师戚文撷授课班级11(5),11(6)班授课类型新授课授课时数2课时授课周数第一周授课日期2012.2.15授课地点 教室课题第六章数列分课题§6.2 等差数列教学目标1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念. 2. 逐步灵活应用等差数列的概念和通项公式解决问题. 3.等差数列的前N项之和 . 4.培养学生分析、比较、归纳的逻辑思维能力. . 2. 3.教学重点等差数列的概念及其通项公式. 教学难点等差数列通项公式的灵活运用. 教学方法情境教学法、自主探究式教学方法教学器材及设备黑板、粉笔复习提问提问内容姓名成绩1.数列的定义? 答: 2. 数列的通项公式? 答: 板书设计 §6.2.1等差数列的概念 1. 1.等差数列的定义 公差:d 2.常数列 3.等差数列的通项公式 an=a1+(n-1)d. 等差数列的前n 项和公式: 例题 练习作业布置习题第1,2题.课后小结本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.我再整个教学中强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
授课 日期 班级16高造价 课题: §6.3等比数列 教学目的要求: 1.理解等比数列的概念,能根据定义判断或证明一个数列是等比数列;2.探索并掌握等比数列的通项公式; 3.掌握等比数列前 n 项和公式及推导过程,能用公式求相关参数; 教学重点、难点:运用等比数列的通项公式求相关参数 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》 授课执行情况及分析: 板书设计或授课提纲 §6.3等比数列 1.等比数列的概念 (学生板书区) 2. 等比数列的通项公式 3.等比数列的求和公式
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。