亲爱的老师们、同学们:上午好!我是来自高三(5)班的周xx,今天我发言的主题是“胸怀梦想,做更好的自己”。今天是XX年的3月27日,距离高考还有72天,三年前我怀揣着梦想与希望走进金沙,一千多个日夜,我时刻记住自己的理想,做更好的自己。汪国真曾说过:“凡是到达了的地方,都是属于昨天,哪怕那山再青,那水再秀,那风再温柔。太深的流连便成了一种羁绊,绊住的不仅是双脚,还有未来。”诗人看似谈的是进退间的从容,我却认为,它实际上囊括了对生命的解读:无论经历几多浮沉,万不要让繁花落寞埋没了你,你得清楚心里究竟想要什么。心中有光,才能一路坚定不移,执着向前。我们金沙人即使如此,只有胸怀梦想,才能奔向远方,做更好的自己。在这里,我想问问所有一起奋战的高三同学们:“你们还记得初进高中时的梦想吗?”高三的一模考试刚结束不久,和其它的考试一样,在成绩公布的那一刻,自然又是几家欢喜几家愁。许多同学在收到成绩单是,似是一下子跌入了低谷,未来只剩下迷茫和不确定性。毕竟一模考试的重要性对每一个高三学生来说都是不言而喻的。到了这个时候,每个人的能力基本上都已经到了一个极限,想要经一部是跟艰难的。然而想倒退一步也许只需要片刻的松懈。
(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。如果坐汽车,每小时行使60千米,4小时可以多少千米?如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
(二)十进制计数法1.新课引入.我们已经学过亿以内的数及计数单位和亿以内的数位顺序.在日常生活中还经常用到比亿大的数,例如我国人口约有12亿,世界人口有50多亿,银行存款已超过百亿等.你能从亿接着往下数吗?2.用算盘数数,认识十亿、百亿、千亿.可以在算盘上先拨上亿,边拨珠边数:10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿.分别板书:十亿 百亿 千亿提问:你学过的个、十、百、千亿,都是用来计数的,它们叫什么?(叫计数单位.)教师指出:十亿、百亿、千亿和以前学习的个、十、百、千亿一样,都是计数单位.
六、说学法本节课的学法主要是自主探究法、合作交流法。教法和学法是和谐统一的,相互联系,密不可分。教学中要注意发挥学生的主体地位,充分调动学生的各种感官参与学习,诱发其内在的潜力,独立主动的探索,使他们不仅学会,而且会学。学生通过小组合作的方式,自主探究设计出秋游方案,然后每个小组间进行交流,最后推选出最合理可行的方案。学生通过解决生活中的实际问题,从中发现与数学之间的联系。并通过同伴间的交流、讨论等多种方法制定出解决方案,他们从生活中抽象,在实践中体验,最后在讨论中明理,从而得出了最佳的方案。七、说教学过程为了能很好地化解重点、突破难点达到预期的教学目标,我设计了三个教学环节,下面,我就从这三个环节一一进行阐述。(一)创设情境、激发兴趣
教学重难点:学会人民币单位间的换算和简单的加减法计算以及学会看物品价格的表示形式第三部分 设计意图1. 通过购物情景的创设,使课堂富有真实的生活气息。2. 为学生搭建知识的攀升阶梯,让学生经历数学知识的发展形成过程。3. 将所学知识应用现实生活中,解决实际问题。第四部分 教学过程一、创设情境,激趣导入。1.孩子们你们喜欢交朋友吗?(喜欢)在班级里谁是你的好朋友呀?(学生回答)你们喜欢我吗?我也想和你们做朋友。今天我还给同学们带来了一个新朋友?你们看它是谁?电脑出示米老鼠你们想和它做朋友吗?想和它做朋友上课就得好好表现,他们才愿意做你们的朋友.谁说一下,上课怎样做才是好好表现呢?(要专心听见,勇敢发言,)老师看看勇敢的你在哪里?
四,说教学过程(一)基本功训练:通过2分钟口算练习以及听,说,动的训练,提高学生的口算能力及运算速度,培养学生的听,说,动的学习习惯.缓解学生的紧张情绪.(二)情景激趣,导入新课.通过谈话,同学们喜欢吃水果吗吃水果能吃出数学问题.这是出示例1的情境图,让学生说一说他们吃出了什么数学问题.这样设计的意图是通过学生自己观察发现数学信息,提出数学问题,培养学生解决问题的意识和能力,培养学生抓住有价值的数学信息的能力.(三)探究同分母分数加法.看到黑板上的和你想到了什么(比大,分母相同,根据这个分数你们能提个问题吗)这是注重培养学生多思考,多表达,在语言表达中深化对前面学习过知识的理解.发展学生的语言表达能力.
(设计意图:拨开云雾见天日。在学生自主探究后,利用多媒体教学课件,结合学生的生活实际,动态演示两种计时法的对应关系,充分调动学生多种感官参与学习的过程,提高了学习效率。)2、探究两种计时法的互换方法师问:“同学们看着钟面,能很快找到了两种计时法对应的时间,那没有了钟面,你能发现他们之间互换方法吗?”同学们通过观察发现普通计时法前面都有表示时间的词语,比如上午、下午、晚上,而24时计时法却没有这些;经过思考总结出由普通计时法向24时计时法转化时要去掉表示时间的词语,中午12时之后要加上12,中午12时之前不用加,反之由24时计时法向普通计时法转化时,要加上表示时间的词语,中午12时之后要减去12,中午12时之前不用减。
2、十进制计数法(1)、师提问:“同学们,我们在前几节课已经学习了到万级为止的数,但是,还有比亿更大的数存在着,(出示数位顺序表):引导学生利用已有的知识进行类推,将已学过的亿以内数位顺序表扩展到“千亿”。教师在计数器上现场贴上亿级的数位。(教师向学生说明:还有比千亿更大的数,由于不常用,暂时不学,因此在数为顺序表后面用“…”,表示后面还有其他数位。)(2)、教师提问:“那么,我们已经学习了哪些计数单位呢?”(3)、小组讨论:“每相邻的两个计数单位之间的进率是多少?”请同学们自己得出结论:每相邻的两个计数单位之间的进率都是十。最后,教师给出“十进制计数法”的名称,在黑板上板书。(三)、课堂总结1、教师:“同学们,今天我们一起学习了?”教师请同学们接下去说完整:“自然数和十进制计数法。”
一、说教材:《简便计算》 这一课是人民教育出版社第八册数学第三单元P44的内容。是在学生已经掌握了乘法的意义并且对乘法交换律、结合律、分配律以及除法的定律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习、自主探索为主,通过学生的观察、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。学生在认知的过程中熟练地应用乘法结合律和连除的简便计算等一些定律并把前面一节课所学知识与今天的内容联系起来,从而更好地进行简便计算,达到灵活运用的目的与效果。二、说教法:根据本节课的教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,采用自学讨论法进行教学。师生作适当归纳或总结性的讲解;最后进行巩固练习。通过这种教法,引导学生充分提出问题并充分讨论问题,充分体现学生的主体性,教师只是学生学习的指导者、活动的组织者。
一、说教材:本节课是在理解和掌握了五条运算定律的基础上进一步学习整数运算中的一些简便计算。这部分内容主要安排了五道例题。我主要教学的是例1和例2,讨论加减法运算中常用的简便计算。例1主要着眼于通过不同解法的比较,使学生认识一个数连续减去两个数可以改为减去这两个数的和。例2主要是加减计算的灵活应用,通过典型的、紧密联系生活,引导学生根据运算特点和数据特点,灵活选用合理简便的计算方法。本节教材最大的特点是:将简便计算的讨论与实际问题的解决有机地结合起来,使问题解决策略的多样化与计算方法的多样化融为一体。根据这一特点,我制定本节课的教学目标有以下几点:1、让学生在解决问题中理解连减的简便计算方法,体验计算方法的多样化。2、使学生感受数学与现实生活中的联系,培养学生根据具体情况选择算法的意识与能力,发展思维性。
如通过数方格的方法求出三角形面积,让学生用两个三角形拼摆。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索所研究的图形与已学的预先之间有什么样的联系,从而找出面积的计算方法,而不是把计算公式直接告诉学生。这样,既使学生在理解的基础上掌握三角形面积计算公式,印象深刻,又培养了学生的思维能力,动手操作能力,发展了空间观念。5、教材重点、难点和关键本节教学内容的重点是掌握三角形面积的计算公式;难点是理解三角形面积公式的推导过程;关键是通过操作实验,使学生明确每个三角形的面积是等底等高的平行四边形面积一半。在教学过程中注意以下几点,重点难点问题就迎刃而解。⑴ 加强学生动手操作,通过三次对两个完全相同的直角三角形、锐角三角形、钝角三角形的拼摆,引导学生弄清三角形面积与平行四边形面积关系,启发学生探索三角形面积的计算方法。
人民币的简单计算是在对人民币的认识后,是人民币的再进一步的认识。本节课的主要知识点主要有三个:一人民币单位间的换算、二进行简单的计算,三是知道商品价格的表示形式。同时通过这节课的学习,逐渐培养交往和社会实践能力,体会人民币在社会生活商品交换中的作用。为了达成以上的一些目标我是这样设计这节课。一、从学生经验入手直接引入商品价格,在学生回忆商品价格的表示方法中,唤醒学生的思绪,使学生觉得在所学的知识与实际生活的联系。让学生体验到数学与日常生活的密切联系。二、在操作中完成进率的换算。进率的换算在教学是一个重点也是难点,为此我在教学上通过不同的的付钱方法,深刻体会,这样的教学让说不清的关系,在操作讲解中得以内化。学生学了也不易忘记。
(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发 生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。三、做一做:1.某运动员投篮5次, 投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由 此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?
二、教学目标1、知识与技能:使学生经历探索加法交换律的过程,理解并掌握加法交换律,初步感知加法交换律的价值,发展应用意识。2、数学思考:使学生在学习用符号、字母表示加法交换律的过程中,初步发展学生的符号感,逐步提高归纳、推理的抽象思维能力。3、解决问题:运用加法交换律的思想探索其他运算中的交换律。4、情感与态度:使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。三、教学重点:理解并运用加法交换律。四、教学难点:在学生已有知识经验的基础上引导学生归纳出加法交换律。五、教学关键:引导学生运用各种不同的表达方法理解加法交换律的思想。六、教学过程(一)情境,形成问题1、谈话:同学们喜欢运动吗?你最喜欢哪项体育运动?李叔叔是一个自行车旅行爱好者,咱们一起去了解一下李叔叔的情况。1、出示李叔叔骑车旅行的情境图。仔细观察这幅图,你从图上知道哪些信息?
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
用四舍五入法将下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)47155(精确到百位);(4)130.06(精确到0.1);(5)4602.15(精确到千位).解析:(1)把千分位上的数字2四舍五入即可;(2)把十分位上的数字9四舍五入即可;(3)先用科学记数法表示,然后把十位上的数字5四舍五入即可;(4)把百分位上的数字6四舍五入即可;(5)先用科学记数法表示,然后把百位上的数字6四舍五入即可.解:(1)0.6328≈0.63(精确到0.01);(2)7.9122≈8(精确到个位);(3)47155≈4.72×104(精确到百位);(4)130.06≈130.1(精确到0.1);(5)4602.15≈5×103(精确到千位).方法总结:按精确度找出要保留的最后一个数位,再按下一个数位上的数四舍五入即可.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、归纳、积累等思维过程,从中获得数学知识与技能,体验教学活动的方法,发展推理能力,同时升华学生的情感态度和价值观.
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.
(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。