x月xx日,新增设的“四流南路萍乡路”公交站(北向南)正式启用,本站停靠xx条公交线路,距离xx地铁站A出入口仅xx米,极大方便了市民换乘出行。市民刘女士每天都要带孙子乘坐地铁x号线去上兴趣班,她说:“以往没有这一站,我和孩子要顶着日头走xx多分钟,现在出门坐上公交车x分钟就到了。”xx运控股集团以着力满足人民群众的美好出行需求为重点,确定了“强化两网融合、优化公交线路、减少线网重复”的专项调研课题,在走访调研集团公交站点、路队、场站的基础上,结合考察一线城市公交企业学习体悟形成调研报告和创新举措清单,将“用心用情在公交主业打造‘美好出行’”列入民生项目清单,推进工作措施落实落地,已开通、调整、优化线路xx条,调整xx条线路首末车时间,调整站点xx处。
2、狠抓制度建设,健全国防教育机制。区国防教育工作的有效开展,离不开制度的完善。我们通过一整套国防教育制度的建立,实现用制度管人、用制度管事,有效推动了全区国防教育机制的形成。我们在《关于贯彻落实的实施意见》文件的基础上相继制定并出台了办公室例会制度、请示报告制度、联席会议制度、学习培训制度、调查研究制度、检查评比制度、文件登记制度、财务制度等在内的八项国防教育工作制度。在此基础上,我们健全了四项工作机制。一是调研反馈机制,我们每年深入基层调研一到二次,具体了解基层单位开展国防教育的情况,帮助基层解决工作中的实际困难,畅通下情上达的通道;二是信息发布机制,我们定期发布全区国防教育信息,尤其是重大节日及纪念日,通过信息发布,及时宣传全民国防教育的重大意义,宣传区内国防教育工作的先进典型,畅通上情下达的通道;
舶集团将理论学习与深刻领悟、深入实践在xx工作期间x次到舶集团考察调研的指示批示精神紧密结合,创新用好政文化特色资源,引领D员干部守住“根”与“魂”、找准“位”与“责”,推动真信、真用。港口集团将学习贯彻对xx、对港口建设和国资国企改革发展的重要指示批示精神与港口业务提质增效密切结合,活学、活用。我省国资国企还突出带着问题学、知行合一学,把ZT教育与当前全省上下正在扎实开展的“三争”行动紧密结合,与国资国企改革发展工作统一起来,以问题为导向,深入调查研究,攻克发展难题,力争解好“方程式”、寻求“最优解”,以高质量发展成效检验学习成果。问题是时代的声音。如何对标世界一流企业价值创造、如何落实好新一轮改革重组和专业化整合、如何进一步优化布局“四大经济”领域全省国资国企深入查找分析在贯彻新发展理念、积极服务和融入新发展格局、推动高质量发展、破解国资“监管难、难监管”中的问题短板及其根源,拿出切实管用的具体措施,真正把ZT教育与中心工作统一起来。
一、“巡”在实处,履职尽责严把关打铁必须自身硬。省委第三巡回指导组始终把自身建设摆在突出位置,第一时间成立临时D支部,全组同志认真学习《著作选读》第一卷、第二卷等学习材料,持续跟进学习有关ZT教育的最新重要讲话精神,坚持理论学习先行,先学一步、学深一层,在学习中深入找准职责定位,增强纪律意识,提高政策把握能力。第一时间召开联系指导单位ZT教育办公室主任和联络员会议,完整准确传达D中央决策部署和省委工作要求,提出要从提高政治站位、把握目标要求等方面推动落实。“对照省委实施方案,全面审核所指导单位实施方案的目标要求、工作安排及重点举措,确保基础工作不漏项、规定动作不缺项、创新动作选好项。”省委第三巡回指导组副组长xx说。
全省ZT教育开展以来,省委第二、第四巡回指导组认真贯彻中央部署和省委要求,牢牢把握督促指导工作的正确方向,紧扣主题主线,把握重点关键,高标准、严要求,扎实推动联系指导单位ZT教育不断向纵深发展。省委第x巡回指导组——开展“融入式”指导推动ZT教育见行见效“在这里上课效果怎么样?”“结课后可以拿到资格证书吗?”“后续你们的就业问题工会能否帮助解决?”近日,省委第x巡回指导组来到xx市xx区xx超市(西湖区新就业形态联合工会)调研,指导组成员与来到劳务超市进行月嫂培训的学员交流,了解联系指导单位省总工会二级机构运行情况。这是省委第x巡回指导组统筹自身建设和指导工作,推动ZT教育走深走实的生动实践。全省ZT教育开展以来,省委第x巡回指导组按照中央决策部署和省委工作要求,统筹理论学习、调查研究、推动发展和检视整改,指导省委组织部等xx家单位扎实开展ZT教育,取得积极成效。
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
课 程数学章节内容 课程类型新课课时安排2课时指导教师 日期12月 7 日学习目标掌握用弧度表示角度的大小学习重点掌握用弧度表示角的方法学习难点弧度制和角度制的互换回顾(温故知新)1、回顾上节课所学内容:任意角度的推广、终边相等的角的表示方法; 2、已经学过角度的计量单位:度,度分秒是如何换算的; 3、圆的周长公式和扇形弧长公式。问题(顺着问题找思路)1、弧度制:等于半径长的圆弧所对的圆心角叫做__________,记作____弧度或1________。 2、正角的弧度为_____数,负角的弧度为_____数,零角的弧度为零。 3、由弧度的定义可知,当角α用弧度来表示,其绝对值|α|和圆弧长l与圆的半径r有:|α|=________。 4、一个圆的周长为_____,所以一周角(360°)的弧度为_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何将角度制转化为弧度制?如何将弧度制转化为角度制?(结合实例讲解)练习(通过练习固要点)1、练习5.2.1; 2、例3;展示(通过展示强能力)(25分钟)(包括学生展示回顾、问题、练习、小组总结等部分)1、引导各小组展示学习成果,在有各小组长指定小组成员展示,结束后,该组组长须总结或指定其他成员进行总结。 2、展示过程中,提醒同学注意老师的板书,或者请老师进行总结,或题目的讲解。
活动目标: 1、通过观察、寻找、分析,了解容易使鸟儿死亡的原因,培养幼儿的探索欲望。 2、愿意大胆表达自己的猜测,并乐意和同伴交流自己的发现。 3、萌发幼儿爱护鸟儿、保护鸟儿的意识。 活动准备: 1、保护好画眉鸟死亡的现场。 2、供幼儿记录的纸、笔。 活动过程: 一、谈话引出话题 师:刚才我们班里发生了一件什么事情?我们班的画眉鸟死了,你的心里有什么感受? 二、讨论猜测小鸟的死因 1、上午的时候小鸟还是活着的,我们午睡的时候它就死了,你认为是什么原因使小鸟死掉的呢?(幼儿自由探讨) 2、幼儿自由猜测发言,师在黑板上帮助幼儿记录
人们曾用这些词语形容老师:蜡烛、泥土、春蚕、园丁。这些语言既表达了人们对教师的尊敬,也表达了他们对教师的希望。教师是奉献者,教师是耕耘者,桃李满天下的时候,教师是收获者。他们收获的不仅仅是学生的成长,更有社会的进步。所以说,教师的角色是多么的重要。 韩愈说:师者,所以传道、授业、解惑也。教师与学生之间是传导与接受的关系,当学生从家长手里交托到教师手里时,教师的角色发生了转变,但是谁能说不是学生改变了教师呢?学生们永远年轻的思维与灵魂赋予了教师们生生不息的求知态度,学生们活跃丰富的头脑传达给教师灵活知性的教学理念,学生们的态度和表现决定着教师的教学准则与方法。这样,教师与学生的角色互换了,我们是共为一体的关系。我中有你,你中有我。 而社会发展到今天,科学技术飞速进步,社会急剧变革,计算机及信息技术在教学中的的应用,师生之间已经不完全是单纯的传递和接受关系了,学生可以从其他渠道获取知识,有时候甚至在某些方面比教师知道的还多,教师和学生的关系也不那么单一了,教师的角色多元化了。在现代,教师不仅是教学过程的设计者,还是学生学习的引导者和促进者,是教学工作和学生学习生活的组织者和管理者,更是一位教学的反思者和研究者。在这诸多的角色体系中,不管是那一个角色没有演好,都将面临职业生涯的挑战。而这么多的环节之中,最重要的和贯穿始终的就是师德师风的培养和表现。
三、教育均衡发展情景 为确保我校工作均衡发展,我校自建校以来不断完善硬件设施以改善办学条件。为每位教师配备电脑4台,打印、复印机3台。由于招生工作的落实及得到了学生与家长的肯定,学生人数很多增加,我校所以先后购进课桌、凳子200余套、黑板15块、各类奖品及辅导参考资料、课外书籍等数套;各教室也重新装饰;在20**年上半年我校新开设语文辅导班,于是重新装修了一间专用语文辅导室。
2、独立将三幅图连起来,表达其中的含义,运用正确的词汇表达图意。 3、敢于克服胆怯的心理,大胆回答问题。活动准备:1、教具:有关4的减法图三幅。 2、学具:幼儿用书,铅笔。活动过程:1、集体活动。 (1)游戏“看谁说得快”。 教师提出要与幼儿玩游戏,随后讲一讲游戏规则:教师说一个数字,请幼儿说出它后面的一个数字。教师报数,全体幼儿尝试回答,当全体幼儿玩的比较熟练后,可以与小组的幼儿玩。 教师说出游戏的另一个规则:教师说一个数字,幼儿说出它前面的一个数字。教师报数,全体幼儿尝试回答。
1.各科教师对实验教学必须制订总的和分学期的教学计划。并于上学期末或本学期初交教导处和实验室各一份。计划应分年级列出实验课题、实验类型、实验时间等。 2.实验室应根据实验各科教学大纲、教材和任课教师的实验教学计划,制订本学期实验室工作计划。计划应包括实验室使用安排,仪器和实验材料的购置及仪器的检查和维护等。 (二)实验教学的组织与实施 1.教师按照实验教学计划认真备课,写好教案,填写《实验通知单》,按规定的时间交实验室并检查所用仪器和器材的准备情况,试作实验,做到“心中有数”。 2.教师要指导学生做好课前预习,明确实验目的,掌握实验原理,并划分实验小组,强调实验纪律,重视安全操作教育。 3.实验室按照《实验通知单》积极准备实验,使需要的仪器处于完好状态,备足药品和材料,检查通风、电源、水源及其它设备。
2、领导小组办公室负责本校区法制宣传教育落实工作,研究提出每年的法制宣传教育工作意见和工作计划;组织实施普法活动;进行普法工作的经常性督促检查,及时发现问题,提出改进意见;配合上级组织对本校区法制宣传教育工作的检查、指导等。 3、领导小组成员依据普法规划和工作分工,组织实施日常的普法活动;根据实际情况和群众反应,及时提出合理化建议,改进普法工作形式,增强普法活动的针对性;积极参与上一级组织对本校区普法工作的检查、指导,听取意见和建议,及时改进有关工作等。
(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发 生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。三、做一做:1.某运动员投篮5次, 投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由 此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。