同志们:刚才,会议审议了《XXXX》等重要文件,今年“三农”工作目标任务已明确(一产增加值增速XX%、农民人均可支配收入增速XX%),要细化制定我区年度乡村振兴工作方案,按照“清单制+责任制+时限制”将任务分解到镇(街)、细化到部门。回首2022年,面对疫情冲击、高温干旱等多重考验,全区上下坚持把“三农”工作作为全区工作的重中之重,以愿拼敢拼能拼会拼的精气神,牢牢守住“三农”基本盘,全力以赴抓产业、攻项目、促振兴,顺利抱回几个沉甸甸的牌子,成绩来之不易,这是市委、市政府坚强领导的结果,也是全区“三农”干部埋头苦干、拼搏实干的成果。在此,我代表区委、区政府向大家的辛勤付出,表示衷心的感谢!在肯定成绩的同时,我们也要清醒地认识到“三农”工作的短板和差距,例如,粮食单产较低、产业链条不长、农产品品牌较少、部分涉农项目推进缓慢。针对问题,区级各部门、各镇(街道)要坚持“缺什么补什么、什么问题突出就解决什么问题”,把该谋的大事谋在前,把该做的工作做到位,认真落实中央和省委、市委农村工作会议决策部署,落实落细中央和省市1号文件各项措施,全面推进乡村振兴,加快农业农村现代化步伐。下面,我再强调5点意见。
二、存在的问题我乡食品药品安全工作虽然取得了一定成绩,但与上级要求和其他兄弟乡镇相比,还有一定的差距。一是办公条件有限,执法力量薄弱,食品检测技术有待进一步提高。二是执法人员力量单薄,工作开展角度不全。三是执法办案水平不高,市场主体经营范围小,处罚力度不够大。四是部分经营户对主体责任意识不够强。三、下一步工作打算(一)推进安全监管工作,守住安全底线。一是强化食品药品安全监管。严格落实食品安全责任制,持续加大监管力度,全乡餐饮单位分类定级暨店外挂牌公示实现全覆盖;扎实开展校园食品安全守护行动,全力保障校园食品安全,防范和减少食源性疾病事件;二是加强特种设备安全风险防范,做到监管全方位、全覆盖、无盲区。加大特种设备隐患整治力度,确保实现特种设备隐患整治率、注册登记率、日常监督检查计划完成率、定期检验率均达100%。
检视整改,从字面上理解,包括两层含义,一是检视,就是查摆问题,分析原因,明确努力方向;二是整改,就是聚焦问题,靶向治疗,纠正工作偏差。这次主题教育检视整改形成了一些好机制。检视整改与其他重点措施有机融合、相互贯通。一个突出表现就是要求领导干部把调研发现的问题与推动发展遇到的问题、群众反映强烈的问题以及巡视巡察、审计监督等暴露的问题,一并列出问题清单进行整改,这既体现了边学习、边对照、边检视、边整改的要求,也有效解决了调查研究与检视整改相脱节的问题。开展性分析要求明确、特色鲜明。开展性分析,是严肃内政治生活的一项经常性工作。的十八届六中全会通过的《关于新形势下内政治生活的若干准则》中明确,“督促员对照章规定的员标准、对照入誓词、联系个人实际进行性分析”。
1、教师和幼儿共同布置新年的环境:用彩色的皱纹纸穿成圆环,做简单的新年挂饰,并带一些气球来装扮活动室。 2、彩色笔、剪刀、浆糊、抹布,幼儿用书《新年的祝福》。 3、教师制作一个礼物盒,里面有自制的送给幼儿和同班教师的新年贺卡。 活动过程: 一、引导幼儿猜测礼物盒中的礼物,引发幼儿参与活动的兴趣。
2、感受与同伴一起辞旧迎新的喜悦。准备:旧挂历、新挂历、布做的“龙”二"三条。中华风俗CD片。过程:1、教师将身体缩成圆柱形状,并发出被点燃的爆炸声“砰”的声音,请幼儿猜猜:“老师刚才表演的是什么?”问幼儿:“鞭炮声让你想到了什么?”2、音乐游戏:敲锣打鼓放鞭炮师:“过年了,除了放鞭炮,还有什么呀?”(出示图片)随音乐做敲锣打鼓放鞭炮的动作。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
一、基本情况xxxx年我县通过,公开、公平、公正的方法,按照上级文件和《xx县xxxx年全县农民培训工作方案的通知》(x农字(xxxx)xxx号)的要求,遴选了xx县旅游工业中等专业学校为培训工作的第三方,确定了培训对象为家庭农场主、农民合作社带头人、种养大户。按照工作方案要求,已全部完成任务,即经营管理型xxx人,技能服务型xx人,共计培训xxx人。二、项目组织开展情况(一)领导重视。按照省、市文件精神,我县各级领导对高素质农民培育工作非常重视,县成立高素质农民培育工作领导小组。在高素质农民培育过程中,县农业农村局长到实训现场指导培训工作。(二)精准遴选培育对象。根据《xx县xxxx年高素质农民培训工作实施方案》,认真开展了培训对象的遴选。重点面向家庭农场主、农民合作社带头人和种养大户,统筹推进新型农业经营和服务主体能力提升、种养加能手技能培训、农村创新创业者培养、乡村治理及社会事业发展带头人培育等行动,大力培养高素质农民队伍。
大纲第二条第三款:口语交际要讲究文明和修养,态度自然,尊重对方,注意场合和对象。这是初语教学的重要内容。第三条三款、四款:教学中应注意的问题指出:要重视学生思维能力的发展,教学过程要突出学生的实践活动,提倡灵活多样的教学方式。因此将此文教学定为听说能力训练课。 本文是初语八年级下册第四单元第一课。八年级下册教学重点之一就是“着重培养学生实际运用语言的能力”,因此,本册一至三单元分别安排了语言运用的简明、连贯、得体的训练。本单元的语言实际运用要求得体即说话要注意场合与对象。单元训练目标为演讲与辩论。本文为演讲的范文,学习此文后,要求学生能演讲,会演讲。所以确定了目标2、3、4。
1.整理用字母表示数。(1)梳理知识:用字母表示数量关系:师:用字母可以表示什么?生:用字母表示运算定律用字母表示计算公式用字母表示计算方法师:你能举例说明吗?生:字母表示 数量关系路程=速度×时间 s=vt总价=单价×数量 c=an工作总量=工作效率×工作时间 c=at(2)字母表示计算方法:+=(3)用字母表示计算公式。师:用字母可以表示哪些平面图形的计算公式生:长方形 周长 c=(a+b) ×2 面积:s=ab 正方形 周长 c=4a 面积:s=a2 平行四边形 面积 s =ah三角形 面积 s=ah¸2 梯形 面积 s=(a+b)·h¸2 圆 周长c=πd=2πr 面积 s=πr2(4)用字母表示运算定律加法交换律 a+b=b+a 加法结合律 (a+b)+c=a+(b+c)乘法交换律 a×b=b×a乘法结合律 (a×b)×c=a×(b×c)乘法分配律 (a+b)×c=a×c+b×c2.在一个含有字母的式子里,数与字母、字母与字母相乘,书写时应注意的问题。师:在一个含有字母的式子里,数与字母、字母与字母相乘,书写时应注意什么?生交流:(1)在含有字母的式子里,数和字母中间的乘号可以用“?”代替,也可以省略不写。(2)省略乘号时,应当把数写在字母的前面。(3)数与数之间的乘号不能省略。加号、减号、除号都不能省略。3. 典题训练(1)填一填。①李奶奶家本月用电a千瓦时,比上个月多用10千瓦时,上个月用电( )千瓦时。②如果每千瓦时电的价格是c元,李奶奶家本月的电费是( )元。李奶奶家银行缴费卡上原有215元,扣除本月电费后,还剩( )元。③小明今年m 岁,妈妈的岁数比她的3倍少6岁。妈妈的岁数是( )岁。如果m=12,妈妈今年是( )岁。④三个连续的自然数,最大的一个是n,那么最小的一个数是( )。(2)连 一 连。比a多3的数 a3比a少3的数 3a3个a相加的和 a+33个a相乘的积 a-3a的3倍 a的
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.