
一、说教材货比三家是北师大版小学数学三年级上册第八单元第二小节的内容。本节课是在学生学习了小数的意义和读法、写法的基础上展开的,也是上节课“买文具”这一情境的延续。教材中安排了学生熟悉的主题图,从标价牌上的价格入手,由“去哪个文具店买铅笔盒、买橡皮最便宜?”这一情境问题,自然地进入比较小数大小的教学,使学生经历把表示价格的小数进行比较的过程,也为后续学习小数的四则混合运算进行了必要的铺垫。针对学情,教材的实际特点及新课程理念,我们初步拟订了两个教学目标:1、探索并掌握比较小数大小的方法,会正确熟练地比较小数的大小。2、通过观察、比较、交流,学会独立思考,并能表达自己的想法。

(3)课堂拓展:是通过提供的三个链接,让学生了解更多的日历。便于学生直接快捷地获取相关信息。锻炼了学生运用网络资源自主学习的能力,使其变为学习的一种新方式。(4)课后作业:充分发挥学生的主动性,创造能力,同时也把所学的数学问题延伸到了课外。通过课后师生的交流,从时间和空间上形成了立体网状的交流信息渠道,促进了学生的发展。最后以时间老人的分别赠言结尾,首尾呼应,对学生进行珍惜时间的教育。五、教学反思本节课我以建构主义理论为指导。依据新课程标准中“重过程,轻结论”的教育理念。尝试在网络环境下,运用设疑激趣、直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、推理验证、自主探究。意在通过信息技术与学科整合,充分发挥网络资源的优势,为学生创设动脑思考、动手尝试、动口表达的时间和空间,把学习的主动权还给学生,在师生互动的动态生成中共同推进学习过程。

探索完估算以后,再解决问题二“买2箱矿泉水共花多少钱”学生在列式计算的过程中可能会因习惯采用分步计算,我就会让学生回忆在复习旧知阶段采用的方法,鼓励他们尝试列综合算式,引入本节课的另一个教学目标:连乘式题的运算顺序,并且要求学生能说明每一步计算的意义。学生普遍会先计算“1箱需要多少钱”,这时我会这样问:“除了可以先算出1箱矿泉水的钱,还可以先算出什么呢?看谁能想出第二种方法”小学生的竞争意识和爱表现的心理会促使他们去开动脑筋,发现更多的解答方式。因为连乘的算式以前已经学过,只是数学比以前大一些而已,所以这里只简要点拨后,让学生独立完成课本第45页“试一试”第一题,也就是进入了练习巩固阶段。

我今天说课的内容是新北师大版小学三年级数学上册第六单元第4课《去奶奶家》。这节课的内容是学生掌握一位数乘两位数和三位数的基础上,借助线段图,简化原题,找到破题思路,提高学生运用乘法和混合运算解决实际问题的能力。导学目标:使学生学会分步解答含有四个已知条件的三步应用题,在理解数量关系的基础上,明确破题思路,掌握解决方法;培养学生画线段图的习惯和能力。教学重点:理解三步应用题的数量关系,掌握分步解答的方法。教学难点:明确破题思路,熟悉应用线段图解决问题。知识链接:一位数乘两位数和三位数的算法。教具准备:PPT多媒体。预习内容:教材P58,因为本节课要教会学生画线段图解决问题,教学内容较多,所以在预习时留了三个问题引导学生做好预习。1、能将所有数学信息用线段图完整表示,并说出线段图的优点;2、分别用分步式和综合式解决问题;3、在地图上标2小时后的位置,并说出这样标的原因。

根据学生的认知规律和学习心理,我设计并将按如下教学程序进行教学。(一)、创设情境,激趣促学恰逢六一节即将来临,根据学生的喜好,创设了到游乐场去玩的情景,(出示一段录像,内容是小朋友们在游乐场玩的欢快场面。)这个活动由导游带领大家到售票处买票,太空船4元,蹦蹦床3元,电动火车2元,然后提出“仔细观察主题图,你能发现哪些数学信息?”接着又提出“你能根据这些数学信息,提出一些数学问题吗?”接下来,小组汇报,老师给予及时表扬。信息由学生发现,问题由学生提出,始终置学生于主人翁的地位,学生置于情景之中,仿佛是其中的一员,那么专注,那么投入,主体意识得到充分发挥。(二)、探究发现,激趣促学皮亚杰认为:“一切真知都应由学生自己获得,或由他重新发明,至少由他重新构建,而不是草率地传递给他。”而对于小学生来说,通过自己的探索而获得新知,就是一种"再创造",因此,在第二阶段的教学中,我将从如下几个层次展开:

(三)深化运用,巩固新知在这个环节,我设计四组闯关题。第一关是试一试:①买3支铅笔需要多少元?②买两把直尺需要多少元?这关是模仿性练习,让学生运用已学的数学知识解决实际问题。第二关是说一说,在学生初步感知了小数乘法的意义后,我给出了6个算式,让学生说一说他们所表示的意义。第三关是填一填,即根据加法算式写乘法算式和根据乘法算式写加法算式,这两关是提高性练习。第四关是涂一涂,即根据算式涂涂得出结果。是为了进一步加深学生对小数乘法意义的理解。第五关是想一想:0.3×4=0.6,4×0.3=?这关是深化性练习,一是让学生明白整数乘法的交换律在小数乘法中同样适用,二是让学生体会一个整数乘小数的意义也是求几个几是多少。第六关是两组口算练习。第七关是两道解决问题。主要是在学生理解小数乘整数的意义的基础上复习以前所学的数量关系。

2、提出问题:3张大饼怎样能够平均分给唐僧师徒四人呢?每人得到大饼的多少张呢?3、揭示课题:分饼二、动手操作,探究新知:活动操作一:3张饼平均分给4个人。1、要求学生用准备好的圆纸片代表饼,剪一剪,拼一拼,画一画,小组交流自己的想法。教师巡视并进行指导。2、各小组汇报分法及分得的结果。(指名回答)第一种分法:把一张一张的饼平均分成4份,每人分每张饼的,共分一张饼的。并请学生上台演示分的整个过程。第二种分法:把3张饼叠起来,平均分成4份,每人分得3张饼的,也是张饼,请学生上台演示分的整个过程。3、演示学生两种分法的图片:4、请观察,这个分数有什么特点,分子比分母小,你还能举几个这样的例子吗?像这样的分数叫作真分数,真分数小于1。

第一题:分一分,算一算,你是怎样想的,这题进一步巩固了本堂课的知识。第二题:这道题有利于学生学习知识观念的形成,不仅培养了学生解决问题的能力,而且还有利于学生数学思想和方法的形成。第三题:赛跑这道题解决了学生先前遇到的问题,起到了前后呼应的作用,使学生了解到掌握知识是解决问题的有效途径。第五环节:(课堂小结)这一环节我采用提问的方式引导学生总结,我将提出三个问题:1.这节课我们学习了什么?2.你有什么收获?3.你还有什么问题要问?通过全课总结,使学生对自己的学习过程、方法、成果等进行反思和评价,随着对自己的评价,培养了学生自我激励的意识,也推动学习向更高的层次发展。最后说说板书设计,我的板书设计主要是体现出知识的探究过程,帮助学生回顾知识学习的过程,便于学生记忆。

我说课的内容是北师大版四年级上册第68-70页的《秋游》,我将从教材、教法、学法、教学过程四个方面对本节课进行说课:一.说教材本节课是在学生掌握四舍五入法试商的基础上进行教学的。此前,学生学习的除法都是一次试商成功不需要调商的。本课由秋游搭车的事件引出计算:每个年级各需几辆车?先让学生运用已有知识进行计算,发现不是所有的除法计算一次试商就能成功,需要对所估得的商进行调试,从而掌握除数是两位数的除法笔算。结合教材的特点和学生的实际情况,我确定了如下教学目标:1、知识与技能:让学生在具体情境中,经历四舍五入法试商后进行调商的探索过程,理解试商后调商的原因。并能正确地进行除数是两位数(商是一位数)的笔算。2、过程与方法:让学生在探索计算方法和解决问题的过程中,感受数学与生活的联系,提高学生的估算能力。

尊敬的领导,评委老师:大家好,今天我说课的题目是北师大版小学数学五年级上册第一单元第五节《除得尽吗》。我将会以说教材、说学生、说教法、说教学过程、说教学效果评测、说反思等六各方面进行我的说课。一:说教材《除得尽吗》本节内容是本单元的第五节,是在学生已经学习了整数除整数、整数除小树、小树除小数、以及四舍五入保留若干位小树的基础之上进行设置的。本节内容的主要知识点就是让学生认识循环小数、表示循环小数以及“四舍五入”法取其近似值,总体难度不大。二:说学生对于五年级学生而言,已经在四年级学习了“四舍五入”法,所以在本节新授教学中已经有了一定的基础。对于教师的教和学生的学都有了一定的促进作用。

课程标准中明确指出:“小学数学的教学内容绝大多数可以联系学生的生活实际,找准每一节教材内容与学生生活实际的“切入点”可让学生产生一种熟悉感、亲切感“,以及“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。

3、情感、态度、价值观目标知识与技能:通过比较的活动,让学生感受数学与生活的联系,培养学生仔细观察、认真思考的良好习惯。过程与方法:使学生经历比较实物的多少、大小、体验一些具体的比较方法。情感态度价值观:让学生经历简单的推理活动,培养学生初步的推理能力。教学重点:体验比较的过程,获得比较的不同方法。教学难点:理解感知最多与最少,最大与最小。教学准备:多媒体课件、各种杯子、两瓶饮料二、说教法:1、讲解法,多媒体课件辅助教学:创设生动具体的教学情境,使学生在愉悦的情景中学习数学知识。充分运用教材提供的教学资源,利用电子白板展台为学生展现一幅过生日画面,引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验,以此为基础展开想象和思考。

二、说目标:(根据学生已有的实际情况和培养目标)1、使学生在已有经验的基础上自主探索得出计算8加几的各种方法,体现算法多样化;使学生进一步理解“凑十法”并能正确熟练地口算8加几;2、培养学生的动手操作能力,初步的观察、比较能力;3、培养学生合作学习以及数学应用的意识;能从日常生活和现实情境中发现并提出简单的数学问题,并能应用已有的知识、经验和方法解决问题,在学习数学的过程中,学会与人合作,获得良好的情感体验。三、说重点:“8加几”的进位加是在“9加几”进位加法的基础上学习,学生通过上节课的学习,已经掌握了“9加几”进位加法的计算方法,尤其是“凑十法”。考虑到学习可以利用计算方法的迁移来学习“8加几”的进位加。据此,本课时确定的教学重点是:能正确熟练地计算8加几。四、说难点:本课时教学中,学生会说多种方法计算,但对于何种方法优化,更适合自己有一定的难度。因此,本课的教学难点为:对“凑十法”的进一步理解;体会算法的多样化。

一、说教材本节课的内容是三位数的连加计算,学生已经在一、二年级学习了百以内的连加、连减、加减混合运算,本节课是在此基础上安排的。学习本节课可以使学生原有的认知结构得到充实和发展,为一位数乘除三位数的学习奠定基础。二.学情分析连加法的数量关系学生早就熟悉,理解也比较容易,本节所呈现的:"捐书"情景的数量关系也很简单,只是每个数据都比较大,能正确计算是本节课的重点.因此,教科书在编排上,鼓励学生独立探索并掌握计算的方法,特别是计算过程中出现连续进位的情况,提醒学生多加注意,养成认真计算,及时验算的良好习惯,并要求学生在计算之前先估一估结果的大致范围.三.说教学目标:根据>第一学段在“数与代数”中提出的要重视学生探究知识的过程,加强估算能力,提倡算法多样化,结合教材的特点和学生的实际情况,确定本课的教学目标为

导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。

解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.

解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用

1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)

【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究

解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。