通过这次培训,使我进一步学会了更好的审视自己、审视身边人,更好的去观察身边人的情绪,了解身边人的心理,理解身边人的需求;心理学不但让人更好的学会面对自己,也让人更好的学会与别人相处;人无远虑必有近忧,身处这个信息高速发展的时代,工作环境变迁、身边人员流动变得习以为常,为了更好的工作,更好的与别人相处,这就要求我们必须更好的适应环境变化,了解身边不断变换的人的心理,学会更好的方式与身边人交流;人与人相处、沟通,理解是融洽相处的前提。但是这些知识从前无论生活中还是工作中都被自己有意无意的忽视了,通过几次培训中老师深入浅出的讲解,对我的帮助和触动非常大。不仅对现在,在学习过程中学到的知识和感触也会深远的影响到我的今后生活和工作。
《中学生守则》可以说是我们的良师益友,是我们迈向人生路的一位优秀的导航,教会我们迈好青春的第一步!阅读《中学生守则》后,我认为作为一名中学生,首先应该有一颗爱国心。热爱祖国,自觉维护伟大祖国的尊严,在心中时时刻刻铭记——我只一名中国人!我为自己是一名中国人而感到骄傲,我们的祖国母亲有着悠久的历史,在古代为四大文明古国之一,对人类文明进步起了巨大的推进作用。中国人民一向都是善良、勤劳、勇敢的,祖国母亲在近代饱受列强的欺凌和践踏,但今时不同往日,现在的中国就像一头崛起的雄狮,我们这一代人要通过自己的努力,刻苦学习科学文化知识,让这条东方巨龙屹立在世界之上!
1、修师德,从勤于育人做起 当您漫步在校园时,您便会发现在这块实验田里,每一天都有一串动人的故事在编织着。在教书育人中我们要努力做到“三心俱到”,即“爱心、耐心、细心”,无论在生活上还是在学习上,时时刻刻关爱学生,特别是对那些特困生,更是“特别的爱给特别的你”,切忌易怒易暴,言行过激,对学生有耐心,对学生细微之处的好的改变也要善于发现,并且多加鼓励,培养学生健康的人格,树立学生学习的自信心,注重培养他们的学习兴趣。 2、修师德,从小小微笑做起 热爱学生,是师德的永恒话题。如何体现教师的爱,如何让学生接受教师的爱,我认为,最简单、最容量做到的、最好的效果是从微笑面对学生做起。
要全面建成小康社会,必须遵循中国特色社会主义事业的总体布局,着力实现经济、政治、文化、社会和生态文明“五位一体”的发展,其出发点和落脚点都是人的全面而自由的发展。在中国经济发展进入新常态发展条件下,只有这样“五位一体”的发展才是硬道理,才是为人民群众欢迎和期盼的发展,才是让人民群众越来越感觉到亲近和温暖的发展
师德是教师人格的重要组成部分,而师德中爱与责任则是师德的灵魂。我们的爱,首先是要爱岗敬业。所谓爱岗敬业就是人们对所从事的职业的一种虔诚、一种执着、一种深情的眷恋,从而进行孜孜不倦的工作。优秀教师无不把教育事业看作是自己的生命。也许正是以这种爱与责任为出发点,他们才能不停地教育自己,完善自己,才能更靠近学生。 我们的的爱,其次是要爱学生。师爱应该是一种真正纯洁的爱,是只讲付出不计回报的爱。师爱应该是一种平等的爱,是无私广泛没有血缘的爱。师爱的基础是平等以感情赢得感情,以心灵去感受他们的感受。师爱应该是一种公正公平的爱,是惠及全体而没有差异的爱。对每一个学生教师应公平、公正,经常与学生谈心,使他们感到老师在意、关心他们。但是关爱是有条件的,有限制的,教师要做到爱而有度,爱而有格。
目的:1、让幼儿学会仿编和解答4的加减应用题。2、在生活情景中能根据水果卡片自编4的加减应用题。准备:1、知识经验准备:请家长带 幼儿去买东西,使幼儿了解一个买与卖的过程。2、物质准备:准备各种水果卡片,人手4个替代物作钱。过程:一、以“帮农民伯伯摘果子”引入。“小朋友,果园里的水果都成熟了,农民伯伯想请你们帮他摘水果,你们愿意吗?”(愿意)二、游戏“摘水果”。师交代游戏玩法和规则。三、分类活动:分水果。1、引导幼儿将自己所摘的水果跟同伴之间进行交流。2、交代任务:将各种水果分别放在筐里。
课程分析中专数学课程教学是专业建设与专业课程体系改革的一部分,应与专业课教学融为一体,立足于为专业课服务,解决实际生活中常见问题,结合中专学生的实际,强调数学的应用性,以满足学生在今后的工作岗位上的实际应用为主,这也体现了新课标中突出应用性的理念。分段函数的实际应用在本课程中的地位:(1) 函数是中专数学学习的重点和难点,函数的思想贯穿于整个中专数学之中,分段函数在科技和生活的各个领域有着十分广泛的应用。(2) 本节所探讨学习分段函数在生活生产中的实际问题上应用,培养学生分析与解决问题的能力,养成正确的数学化理性思维的同时,形成一种意识,即数学“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等职业教育课程改革国家规划教材,依照13级教学计划,函数的实际应用举例内容安排在第三章函数的最后一部分讲解。本节内容是在学生熟知函数的概念,表示方法和对函数性质有一定了解的基础上研究分段函数,同时深化学生对函数概念的理解和认识,也为接下来学习指数函数和对数函数作了良好铺垫。根据13级学生实际情况,由生活生产中的实际问题入手,求得分段函数此部分知识以学生生活常识为背景,可以引导学生分析得出。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
评价分析法,就是引述事例后,对所引述的事例作适当的评价,从而使自己的观点得到印证。例如,在论“节俭”时,引用了“曾国藩以俭戒子,其子曾纪泽终成出色的外交家;方志敏居官不贪,一生清贫,千古留名”的事实后,接着进行分析:是的,“俭者心常富”,节俭能培养人同困难作斗争的勇气和意志,而这正是一个人立业最重要的素质。从这个意义上说,有人说饥饿是人生的佐料,吃苦是一种资本也不无道理,而自觉和戒奢尚俭则更是促人修身养性,磨炼意志的有效途径。这里,作者紧扣论点,对论据进行了评价性分析,这种评价分析使作者的观点得到强化。(四)因果分析法因果分析法,就是抓住论据所述的事实,并据此推求形成原因的一种分析方法。事出必有其因。我们可以依据事物发展变化的因果关系,由事物发展变化的结果,推导出产生这种结果的原因,从而揭示出一定的生活规律,使事例有力地证明观点。
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
(二)研学中评价重在过程落实。红色研学过程中的评价关键在于引导学生回应“我们‘研’了什么”“体验了什么”,思考是否达到了预期的研学目标。具体而言,我们以红色研学课程手册中的任务群方式,以半开放的形式呈现学生对红色知、行、意课程中的项目实践、主题探究的完成情况。例如,在第三项任务寻找“x精神”中,课程手册以展馆内导师边讲解学生边寻找“x精神”的内涵标志的方式,将学生能否正确书写作为研学中学习及评价的重要载体,学生探访展馆后,在研学手册对应位置以填空形式,逐步丰富对那段历史的认识, 真实的感受。第五课模拟战场实践,则是通过“手榴弹投掷”、“穿越封锁线”、“应用射击”三个实践环节,为学生提供具体、直观的评价抓手。通过对红色研学阶段性成果积累、展示的评价,助力学生真正投入到红色研学学习,实现游中研、研中学。
(一)城市建设气魄之大令人赞叹。昆山之行,我们深深地为其城市建设的大手笔、宽视野、科学性、前瞻性所吸引,为其建筑包罗万象、风格迥异、彰显特色、相互匹配所折服,为其坚持规划优先、高点定位、多措并举推进城市建设所震撼,与其说昆山是一座现代化都市,不如说是我国对外开放的一张名片。比如,在城市规划建设方面,昆山市敢于跳出昆山做规划,置身于长三角、全国乃至世界范围来定位,围绕“大城市、现代化、可持续”的总体要求,通过聘请国内知名设计公司甚至美国易道等国际大公司,对城市的总体发展规划、各片区详细规划及各专项规划,统盘考虑,一次成型,严格实施,确保了规划的先进性、指导性与严肃性。同时,按照“年年出精品、处处有亮点”的要求,每年都实施一批道路、桥梁等基础设施项目,以及体育场馆、文化广场、艺术中心等功能性项目,逐步建成了集健身、休、文化、展览、商业等多种功能于一体的市民文化广场,占地1.2万平米、全国县级市最先进的公共图书馆之一的昆山图书馆,占地1.6万平米、集中展示昆山经济社会发展成果的昆山科博馆,总面积50平方公里、现已位居中国10大最佳服务外包园区之一的花桥国际商务城特色建筑群等诸多城市亮点,目前全市城市化率已达到74%。在城市管理经营方面,昆山市坚持以“民生城管”的昆山城管品牌为抓手,把所有镇作为一级执行部门纳入数字城管范围,实行定点、定路段、定责任的分片包干责任制,在全国率先实现了一级指挥全覆盖。昆山市城管局每周都会确定一个重点整治的城市环境问题,集中力量予以解决,有力地保障了城市环境面貌整洁美化
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。