一、说教材《墨梅》是一首题画诗,是诗人为自己所画的墨梅而题写的。全诗表达了诗人不与世俗同流合污的坚贞纯洁的品格。二、说教学目标1.正确、流利、有感情地朗读古诗,背诵古诗。2.学会本课生字新词。理解诗句中的词语,能够知道古诗的意思。3.背诵古诗,感受古诗语言的凝练精美和意境的优美深远,体会诗人借物言志表达的情怀和志向。三、说教学重难点1.能说出诗句的意思,体会作者表达的思想感情。2感受古诗美的意境,使学生受到自然美和艺术美的熏陶,并体会诗在写作上的特点。
教学难点:1.在理解的基础上,结合诗句展开想象,体会童真的纯真与快乐,与古诗意境产生共鸣。2.品味古诗语言,抓住“偷采”、“不解”、“藏踪迹”等词语感受诗人炼字之妙。二、 说教法、学法。1.教法:读书指导法,观察法,启发式教学法讨论法等。2.学法:自读—自悟—合作讨论—想象—交流的学习方法。三、说教学流程。﹙一﹚激趣导入,揭示课题。1.激趣:同学们,你们小时候都做过那些有意思的事交流一下吧!2.导入:今天,我们就一起来看看伟大唐代诗人白居易笔下的顽童在做些什么吧。﹙板书课题﹚《池上》
一、说教材《古诗三首》是统编小学语文三年级下册第一单元中的第一篇课文。《绝句》这首诗抓住迟日、江山、春风、花草等景物给读者描绘了一幅明丽纷繁的春景图,表达了诗人对初春时节大自然一派生机、欣欣向荣景象的赞美与热爱。 《惠崇春江晚景》成功地写出了早春时节的春江景色,诗人以其细致、敏锐的感受,捕捉住季节转换时的景物特征,抒发了对早春的喜悦和赞美之情。 《三衢道中》通过写诗人行于三衢山道中的见闻,在景物的描绘中融入了自己愉悦的心情,表达了诗人对大自然之美的喜悦与赞美。本单元的主题是通过对学生进行美的熏陶,培养学生热爱大自然的情感。二、说学情 三年级的学生有了一定的古诗学习经验,学生掌握了一定的古诗学习的方法。为此我让学生自主探究,合作交流本诗。
今天我说课的内容是小学语文部编版版四年级下册第五单元的第1课《海上日出》。这篇文章是我国著名作家巴金先生写的一篇非常优秀的散文。下面我就从教材、教法与学法、教学过程,以及教学板书等几个方面进行说课。一、说教材《海上日出》是我国著名作家巴金先生的一篇非常优秀的散文。这篇课文通过描写海上日出的不同景象,表达了作者对奇伟壮观的大自然景观的热爱和赞美,体现了对光明的追求和向往。课文是按照“日出前、日出时、日出后”的观察顺序来记叙的。课文描绘了晴朗天气时日出和有云时日出两种景象,而有云时又分云薄和云厚两种现象进行描写。二、说教学目标第二课时的任务是理解文中重点语句的含义,掌握按照事物的发展顺序进行观察的方法,同时学习作者的表达方法,默读课文。因此,我将本课的教学目标设立如下:
一、说教材《文言文二则》是统编语文小学六年级下册第五单元中的一篇精读课文,有两篇文言文组成。《学弈》这篇文言文选自《孟子·告子上》,通过弈秋教两个人学下围棋的事,说明了做事必须专心致志,决不可三心二意的道理。文章先说弈秋是全国最擅长下围棋的人,然后讲弈秋同时教两个学习态度不同的人下围棋,学习效果截然不同,最后指出这两个人学习结果不同,并不是在智力上有多大差异。《两小儿辩日中》它是一篇寓言故事,选自《列子·汤问》。文章叙述古时候两个孩子凭着自己的直觉,一个认为太阳早晨离人近,一个认为太阳在中午离人近,为此各持一端,争持不下,就连孔子这样博学的人也不能做出判断。这个故事说明为了认识自然,两小儿勇于探索,大胆质疑的品质,也说明宇宙无限,知识无穷,再博学的人也有所不知,学习是无止境的。同时也赞扬了孔子实事求是、敢于承认自己学识不足的精神和古代人民敢于探求客观真理。
一、【说教材】今天我说课的内容是人教版六年级下册第一课《北京的春节》,本篇文章以时间为经线,以人们的活动为纬线结构全文。作者先介绍北京的春节从腊月初旬就开始了:人们熬腊八粥、泡腊八蒜、购买年货、过小年……做好过春节的充分准备。紧接着,详细描述过春节的三次高潮:除夕夜家家灯火通宵,鞭炮声日夜不绝,吃团圆饭、守岁;初一男人们外出拜年,女人们在家接待客人,小孩子们逛庙会;十五观花灯、放鞭炮、吃元宵。最后写正月十九春节结束。文中列举了大量的老北京过春节的习俗,情趣盎然,学生喜闻乐见。全文内容安排有序,脉络清晰,衔接紧密,详略得当,推进自然。语言表达朴实简洁,生动形象,耐人寻味,字里行间处处透出人们欢欢喜喜过春节的心情,反映出老北京人热爱生活,追求美好生活的心愿。
一、说教材《表里的生物》一文,叙述了作者小时候一段幼稚可笑的经历。他认为“凡能发出声音的,都是活的生物”,听到父亲的怀表发出清脆的声音,就认为里面也是一定有一个小生物。这使他充满了好奇,可是父亲不许他动,这又使他的心很痛苦。一次父亲打开表盖让他看,并说这摆来摆去的小东西是蝎子尾巴,他信以为真,见人就说父亲有一个小蝎子在表里。文章叙述质朴,就像与人倾心交谈自己童年的一件难忘的趣事,所以教师授课时尽量营造这种亲切的氛围,让学生津津有味地学,兴致勃勃地说。二、说教学目标1.读懂课文内容,了解文中的“我”是个怎样的孩子,激发学生从小培养自己善于观察,勤于思考的习惯,和不断探索的精神。2.抓住课文中对人物对话和心理活动的描写,有感情地朗读课文,体会课文表达的意思。
1、说教材:《藏戏》篇课文是一篇知识性、人文性、趣味性都较强的民俗散文.它以准确性说明为前提,以形象化描写为手段,在说明角度、表达顺序、表达方法、语言风格等方面别具一格,内容侧重介绍藏戏的形成及艺术特色。语言丰富多样、生动传神,颇具文学色彩。2、说学情:六年级学生已逐步形成了自己的学习体系,具备了对具体事物的认知能力,但学习缺乏稳定性,所以,针对这种趣味性较强的文章,关键在于激发学生兴趣,创设出引人入胜的教学情境。3、说目标:1、认、读、记文章中的九个词语。积累好词佳句。2、了解藏戏特点以及形成程。3、激发学生对藏戏的喜爱之情。4、说重点:1.通过了解藏戏的形成,体会藏戏独具特色的艺术形式。2.了解本文的表达方法及语言特点,学习作者生动形象的表达。5、说准备1、通过网络查询藏戏的历史、剧目、图片、录像等
一、说教材1.教材分析我说课的内容是小学语文九年制义务教材六年级下册第三单元第8课《匆匆》,这是现代著名作家朱自清先生的一篇脍炙人口的散文。文章紧紧围绕着“匆匆”二字,细腻地刻画了时间流逝的踪迹,表达了作者对虚度时光感到无奈和惋惜,揭示了旧时代的年轻人已有所觉醒,但又为前途不明感到彷徨的复杂心情。文章先提出问题:“我们的日子为什么一去不复返呢?”看似在问,实际上表达了作者对时光逝去而无法留它的无奈和对已逝去日子的深深留恋。然后通过“洗手时、吃饭时、默默时……”这一系列生活情趣的描写,具体再现日子的去来匆匆和稍纵即逝以及作者对人生的思索。最后抓住“日子为什么一去不复返呢?”一句结尾,照应开头,突出作者关于时光匆匆的感慨,引人深思。
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
人是一个能动的个体,学习是学习者主动建构的过程。社会的发展也强烈需要发展幼儿的主动性和创造性。而数学是一门抽象性、逻辑性很强的学科。在我选择的“二次分类”这个数学活动时,我是考虑到,老师们习惯于仅以幼儿认识事物是从具体到抽象这一特点为依据,只强调直观性,在活动中教师常运用教具演示,并以此为基础讲解基本的数学概念,而实际上,幼儿数学概念的形成不是通过听老师讲、看老师演示所能解决得了的,必须通过幼儿自己主动活动的过程。“图形的二次分类”我希望提供给幼儿充分的操作材料,再加以引导,一步一步深入,使幼儿真正在操作过程中去发现、归纳“图形的二次分类”的特征。
3.想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。第三环节学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。(第1题) (第2题)2.如右图,求出A,B,C,D,E,F的坐标。第四环节感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。