加强部门协作,确保今年的衔接资金项目实施进度;进一步强化档案管理,及时收集、整理村级档案和扶贫包资料,对前期收集的资料及时进行完善,确保在各级督查检查和评估时有据可依、有证可查。 2.做好常态化监测。每月开展逐户逐人逐项开展入户走访排查,对区域内的困难户、突发情况户进行摸排并会商,切实解决政策理解不精准、监测不及时不全面、精准帮扶不到位、风险消除简单化等突出问题、精准识别监测对象,将有返贫致贫风险和突发严重困难的农户全部纳入监测范围,强化精准施策,推动政策落实,坚决守住不发生规模性返贫的底线。 3.做好集中排查各项工作。按时保质保量完成本次集中排查工作,针对符合条件的户按照程序纳入监测户管理。针对排查出的问题加强督查检查和部门联动,按时完成集中排查的问题整改,解决农户实际困难,确保不发生返贫致贫等问题。
2.残疾人体育事业取得长足进步。一是区残联出任中国残疾人自行车队领队,带领10名残疾人运动员赴*参加2024年亚洲残疾人自行车场地锦标赛,共斩获27金4银1铜,成功获得2024年国际自行车联盟(UCI)残疾人自行车场地世锦赛参赛资格。组织我区15名残疾人参加并夺得第七届中国残疾人冰雪季活动暨2024年*市旱地冰壶锦标赛冠军。组织我区20名残疾人运动员代表*市残疾人游泳队参加第九届省残运会6个项目的比赛,取得8金2银6铜优异成绩。二是组织我区20名特殊儿童参加*市残联第十七届全国特奥日暨第二届足球嘉年华活动。整合攀岩、游泳、网球、冰球、帆船多方资源,成立*区特殊儿童运动康复基地联盟,为促进特殊儿童体育职业化发展奠定基础。三是组织我区12名残疾人体育工作者参加全市残疾人体育运动健身能力评估培训,提高残疾人体育工作者能力。
3.聚焦信访维稳,全力维护社会稳定。始终坚持底线思维,树牢风险意识,确保不出乱、不添乱,为经济社会发展营造良好氛围。矛盾化解及时有效,注重源头治理,办好初信初访,严格落实初信初访首办责任制。持续跟进了解我镇重点人群和重点信访对象,按照“三到位一处理”及《信访工作条例》要求,稳妥化解矛盾满足合理诉求。常态化做好领导班子成员开门接访制度工作,及时了解群众所思所想,不断建强服务型政府。4.聚焦乡村振兴,巩固拓展脱贫攻坚成果。建立健全防止返贫致贫动态监测和帮扶机制,严格落实“四个不摘”要求,同“十四五”规划相衔接,全面推进乡村振兴。组织监测队伍,发挥“人防”监测作用,定期开展走访,对易返贫致贫人口及时发现、及时帮扶,守住防止规模性返贫底线,完成对脱贫户和监测对象动态管理、精准识别,精准落实各类帮扶政策。实施分类帮扶,根据监测对象实际情况,建立“因户制宜、分类施策”的帮扶措施。继续做大做强到村产业,要充分挖掘我镇现有的资源,不断壮大村集体经济收入。
(三)部分工作需要多部门合作,移民搬迁安置扫尾工作推进缓慢。一是部分电站所涉及安置地变化、实物指标变化、库底清理资金增加等问题还未进行移民安置规划修编;二是库区淹没征地线界桩未设立矛盾纠纷多;三是涉及改(复)建的国有企事业单位国有土地手续办理费用、搬迁安置户宅基地证手续办理费用未落实;四是部分电站改复建工程设计变更未完成,无法结算审计验收;五是部分电站移民安置逐年实物长效补偿资金不能按时兑现;六是在水利工程移民安置工作中重工程轻移民,导致移民安置工作推进滞后(如小地方水库的移民至今未搬迁无法下闸蓄水,*灌区移民初步设计滞后项目初设无法审批)。三、下半年工作计划(一)按期完成移民搬迁安置任务。一是聘请中介启动三岔河水电站资金、项目档案清理工作。
4.聚焦乡村振兴,巩固拓展脱贫攻坚成果。建立健全防止返贫致贫动态监测和帮扶机制,严格落实“四个不摘”要求,同“十四五”规划相衔接,全面推进乡村振兴。组织监测队伍,发挥“人防”监测作用,定期开展走访,对易返贫致贫人口及时发现、及时帮扶,守住防止规模性返贫底线,完成对脱贫户和监测对象动态管理、精准识别,精准落实各类帮扶政策。实施分类帮扶,根据监测对象实际情况,建立“因户制宜、分类施策”的帮扶措施。继续做大做强到村产业,要充分挖掘我镇现有的资源,不断壮大村集体经济收入。5.聚焦人居环境,努力提高生活品质。贯彻新发展理念,坚持生态文明建设,加大环境整治力度,全面落实河长制、林长制,打好蓝天、碧水、净土保卫战,提升乡村“颜值”,为群众提供美好环境民生福祉。持续推进“五清一改”村庄清洁行动,把人居环境整治和“美丽庭院”工作抓细、抓实、抓出成效。集中力量清理拆除全域无功能建筑物、旱厕,整治黑臭水体。
下半年年,我公司将坚持“xx”的原则,按照改革既定时间表、任务书,重点抓好以下几个方面的工作:(一)聚焦深化改革,坚持解放思想,夯实高质量发展思想基础xx改革已经落实落地,但我们作为企业运营才刚刚起步。广大干部职工在思维上还没有从xx转变为xx,思想上还没有完全适应现代企业。要进一步解放思想、打开思路、对标看齐,不断巩固“xx”专项活动成果,围绕高质量发展要求,贯彻落实新发展理念,进一步战略性布局、前瞻性思考产业经济发展,教育引导广大干部职工牢固树立严谨认真的处事态度、求真务实的工作作风。努力实现在思想上破冰、在行动上突围、在改革上发力、在发展上突破,真正以思想大解放推动改革再深入、实践再创新。(二)聚焦提质增效,深化规范运行,健全高质量发展制度体系
二是聚焦能力建设,掌握新技术,打造竞争力。当前检测企业间竞争日趋激烈,国际事业部人才流失较为明显,推动发展的“驱动力”呈现弱势。我们将围绕国际化人才梯队建设,出台配套支持政策,提升队伍能力,快速掌握Wi-Fi7、5G毫米波等前沿无线技术,提升本地化测试能力,解决客户产品全生命周期中面临的新技术导入滞后、认证标准理解偏差等问题,助力企业打造具有国际竞争力的产品。三是聚焦业务推厂,瞄准大趋势,实现大突破。面对国际认证市场日益萎缩的现状,我们将把视线放到发展“潜力”上来,更加重视“一带一路”国家和第三世界国家的需要,立足检测中心的技术、服务优势,依托我国“一带一路”整体思路,针对发展中国家检测能力弱、发展需求大等特点,以产业升级、技术出口,找到国际业务发展“突破点”“新蓝海”。
二、强化日常分析研判,让能“上”能“下”有理由通过日常考核考察、专项调研、监督检查等方式,对干部队伍及干部个人进行综合分析研判,2021年乡镇领导班子换届中,通过充分比选酝酿,选拔x名优秀干部进入乡镇领导班子,对x名工作能力与岗位需求不相匹配的干部及时进行调整。注重将工作实绩与干部能“上”能“下”有机结合,每季度对各单位牵头负责的省、州、市重点项目和工作任务推进情况进行全面督办,根据推动落实情况进行定星评级,在市行政中心门口以大型展板向全市人民公示,并将其作为年度综合目标考核等次评定的重要依据,同时作为干部评优评先、提拔晋升和调整履职不力、本职工作推进较差的干部“下”的重要依据。三、全面落实严管厚爱,让能“上”能“下”有措施构建“四位一体”从严管理干部机制,整合纪检、组织、机构编制、考评部门职能职责资源,印发《x市建立工作目标、岗位责任、正向激励保障、负向惩戒约束“四位一体”从严管理干部机制实施方案》,针对干部正向激励保障和负面惩戒约束提出x条措施,着力将干部管理落细落实落在经常,推动干部能“上”能“下”科学化、规范化,为高质量建设强富美的新x提供了有力的组织保证。
1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地劳动技术价值观。 2、知识与技能:主要内容包括“金属材料与加工”“服装裁剪与缝制”“家用电冰箱”共三章,各章都力图讲清知识的来龙去脉,将基础知识和怎样操作呈现给同学们。
1、心理健康活动课 本期心理健康活动课仍在五、六年级开设。从内容形式上有生命教育课、积极心理品质培养课、团体心理疏导课三类。其中,五年级生命教育课主要从生命的自我探索出发,探讨性别的形成、生命的美好与死亡教育;六年级生命教育课则侧重生涯规划,为未来生活做准备。积极心理品质培养课方面,五年级注重坚持力培养及自我潜能的开发,六年级侧重抗挫与领导力等品格力量。团体心理疏导方面,五年级重在因学业负担和人际交往导致的消极情绪疏导,六年级则关注青春期健康心理问题。
但我校网络学习在体现共性特征的同时,也彰显着学科特性,在教研组的统筹规划下,各学科教学工作扎实有效。语文学科坚持落实语文核心素养,针对不同年级学生及当前考纲要求,对学生提出针对性的指导方法,例如高三年级结合当前考试要求,强化学生对时事新闻的解读能力,非毕业年级强化学生的日常学习积累能力。数学学科根据不同学生的实际情况,有针对性的提出作业训练,同时通过抽查等方式,落实对学生的训练成效。英语学科强化对不同考点的专题训练,有计划的开展对听力、阅读理解、完形填空等题型的专项训练,重在积累。综合学科加强合作,强化素材整理及综合训练,将时间进行有机协调,落实综合学习成效。
但我校网络学习在体现共性特征的同时,也彰显着学科特性,在教研组的统筹规划下,各学科教学工作扎实有效。语文学科坚持落实语文核心素养,针对不同年级学生及当前考纲要求,对学生提出针对性的指导方法,例如高三年级结合当前考试要求,强化学生对时事新闻的解读能力,非毕业年级强化学生的日常学习积累能力。数学学科根据不同学生的实际情况,有针对性的提出作业训练,同时通过抽查等方式,落实对学生的训练成效。英语学科强化对不同考点的专题训练,有计划的开展对听力、阅读理解、完形填空等题型的专项训练,重在积累。综合学科加强合作,强化素材整理及综合训练,将时间进行有机协调,落实综合学习成效。
一、全体教师必须服从上级和学校的管理,自觉做到依规办事、依法治教,遵守上级和学校的各项规章制度,做到遵纪守法、教书育人、为人师表,崇尚科学,反对邪教。 二、学校内部教师人事调整,由学校领导班子成员根据教师的专长和表现,召开专门会议研究讨论决定,人事调配实行一次性讨论,一经讨论确定,原则上不得变动,特殊情况需要调整的要经过学校领导班子集体讨论决定。 三、每学期对教师的各方面表现进行一次业绩考评,考评结果由高分到低分排队,末位的实行待岗;考评结果作为教师评聘、评优、评先、考核、晋升的重要依据。 四、实行教师聘任制,学校根据教师的平时的表现和业绩考评结果,由校领导班子根据学校和岗位的需要,确定聘任教师的名单,各教师与学校签定聘任协议。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。