(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
一、说教材:用字母表示数是人教版小学数学五年级上册第四单元的教学内容。在学习本单元之前,学生已经接触过一些用字母表示运算律,对简单实际问题中的基本数量关系熟悉了,这些都是学生理解本单元所学知识的重要基础。同时本单元知识又是学生进入代数知识学习的入门知识,是学习方程的基础。二、说教学目标和重难点:(一)目标1、理解用字母可以表示数,能用含有字母的式子表示简单的数和运算定律,初步学习用代数符号语言进行表述交流。2、经历把简单的实际问题用含有字母的式子进行表达的抽象过程,发展符号感。3、在解决问题中体会数学与生活的联系,体会代数符号表示实际问题中数量关系的概括性和简洁性,从而进一步感受学习数学的价值。(二)重点难点:理解用字母表示数的含义,能用含有字母的式子表示简单的数量关系。正确地用含有字母的式子表示运算定律。
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”(5)讨论互评,自主学习放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指导,掌握不失总结如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
(通过这道题的练习,可以看出中国的汉字是非常美的。谁能举例说出哪些汉字可以写成轴对称图形吗?)(师生共同品味中国文字的对称美,从而宏扬中国文化,做到知识性、技能性、思想性和艺术性溶为一体。)4、配乐剪轴对称图形比赛。请同学们拿出一张彩色纸用对折的方法剪出一个轴对称图形,然后贴在白纸上。并把剪得的作品贴在黑板上让大家欣赏。引导学生观察:哪些图形较美?为什么?五、归纳小结。设问 :今天学了什么?什么叫轴对称图形? 怎样判断轴对称图形? 什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。
【设计意图:先让学生观察、猜想,然后自己想办法“证明”自己的猜想。这样设计,给学生自主思考的时间和空间。在独立思考的基础上,再小组合作,把动脑思考与动手操作有机结合,把独立思考与小组合作有机结合。有利于提高探索活动的实效性。】教师巡视,参与学生的操作和讨论,找出有代表性的几种“证明”方法。3.交流讨论师:差不多了吧?能解释为什么把4个苹果放入3个抽屉,会出现总有一个抽屉中至少放2个苹果这一现象了吗?【学情预设:】第一种:枚举法请学生观察不同的放法,能发现什么?引导学生发现:每一种摆放情况,都一定有一个抽屉中至少放2个苹果。也就是说不管怎么放,总有一个抽屉中至少放2个苹果。第二种:假设法。还有没有用不同的方法来验证把4个苹果放入3个抽屉,总有一个抽屉中至少放2个苹果这一现象吗?
四、说教学策略和方法本课的设计与实施,是一段艰难的过程,同时,更是一段充满着创造与激情的过程。我把本课的教学大致分成了四个部分。一、亲历生活,交流发现祖国幅员辽阔,春秋季南北温差变化,如此难得的学习资源怎能不好好地利用呢?课前,我给学生布置了一个任务:请你对全国各地的气温进行一次调查。上课开始的5分钟,是学生对他们的调查进行交流的时间。在这个开放与灵动的5分钟里,既有“小小天气播报员”精彩地播报,更有孩子们围绕着调查数据展开的精彩对答,请看录像(录像)。正是基于这种对生活的亲身感受,学生自然地走进了负数。在对直观数据进行观察与分析的过程中,学生建立起对“负数”的感性认识。实践表明,教师为学生搭建一个交流的“舞台”,学生就能为教师呈现出一个开放的课堂、动态的课堂。
四、教学流程分析 (一)激趣引入,创设情境 充分利用情境,让学生感受统计的必要性,引导学生体会到解决这类问题的思路是:收集数据、整理数据、做出决策,从而使学生从感性认识上升到理性认识,既培养了解决实际问题的能力,也使学生感到学习扇形统计图的必要性。利用多媒体提供学生感兴趣的生活资料,让学生收集、整理、分析信息,激发学生学习兴趣,体会数学来源于生活。 (二)新旧知识对比,探究学习 教师在设计时,对教材上的例题和有关练习作了修改,从书本指向性非常明确的问题改成了完全开放的问题,有效培养了学生的识图能力,增强了学生思维的开放性。多媒体展示同学们知道的七大洲四大洋的知识并制作成扇形统计图以及书中的例题,引导学生读图思考、小组交流。在此基础上,出示教师收集的扇形统计图资料,引导学生读图交流,并归纳概括扇形统计图的特点和作用,以及在做这样题时应注意的问题。
三、应用知识,解决问题1、练习P63做一做,并根据统计图进行分析和提建议。(1)学生动手制作。(2)用幻灯展示学生作品,并评议。(3)谈自己根据统计图进行分析和提建议2、学生动手绘制折线统计图。(用自己收集的数据进行绘制折线统计图)(1)学生绘制折线统计图。(2)学生谈自己收集数据与绘制折线统计图的目的?(教师选择性地展示学生的作品,并交流)生1:我收集的数据是自己上学期期末考试成绩与这学期第一、二两单元的数学成绩,制图目的是为了清楚地看出自己本学期成绩变化情况。生2:我收集的数据是妈妈店上3月下旬衣服销售情况,目的是为了帮助妈妈如何调整进货。生3:我收集的是今年1—3月份,我家的用电情况,目的是通过观察用电的变化情况来调整用电,尽量做到节约用电。生4:我妈妈是医生,我从妈妈那收集了我7—12岁的身高数据,制折线统计图的目的是为了更好地了解自己的生长情况,并通过这一情况来指导我班同学的饮食。
仔细观察两位同学的算法,看看有什么不同之处?第一种是求解这道题的分步列式方法,第二种是列综合算式解答的算式。引导学生对比分步算式与综合算式,让学生体会乘除混合运算的顺序。组织学生讨论:分数乘除混合运算怎样计算?引导学生归纳:分数乘除混合运算中,遇到除以一个数时,只要乘以这个数的倒数,就可以把乘除混合运算转化为分数连乘,再按照分数连乘的方法进行计算。经过计算,你有什么经验要和同学们分享?想提醒大家注意什么?此处我尽量把解决问题的主动权交给学生,让他们进行讲解、讨论、对比、分析,再通过同伴间的互相交流,找到知识之间的内在联系。三、分层练习,巩固应用本课练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”、“拓展性练习”和“趣味性练习”,检验学生的学习效果。1、基础性练习:做课本自主练习第3题,让学生自主完成,全班交流算法,目的是巩固算法,反馈学习效果。
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、正确计算、概括总结检查的学习习惯。四、教学程序一、复习1、说说每道题的运算顺序。2、问:在没有括号的算式里,如果有乘法又有加、减法,按怎样的顺序运算?在有括号的算式里,要按怎样的顺序运算?二、教学新课1、教学例2的第(1)题:说说这道题要先算哪一步再算哪一步?为什么要按照怎样的顺序运算?学生板演。2、教学例2的第(2)题。(1)说明:同样的,整数乘法的交换律、结合律对于分数乘法同样适用。(2)出示例2题(2):说说这道题例的数据有什么特点?这样算简便吗?为什么这样可以简便?应用了什么运算定律?按简便算法计算结果。3、练一练想先那些题可以用简便算法?指名板演。4、练习五2(做书上。第三题为什么可以用简便算法。)5、练习五后两题为什么这样算?三、巩固练习练习五1、3、5
(三)看书质疑师:今天探索的问题与教科书第20-21页里例2-例3的内容相似,打开看看,书是怎么解答的?有疑问的可以提出来。生认真看书。生质疑。三、模拟练习,拓展应用师:请看学校调查表(课件出示),还有什么问题没有解决啊?(买折叠车和同学去秋游的人数)想解决吗?(想)师:提供这个信息能解决什么问题呢?生:买车的人数。师:你会直接口算吗?会的请你站起来告诉大家。生都站了起来了。师:这么都同学会啊,老师很为你们高兴,还是请代表说。生说。师:你们有意见吗?生:没有(好)师:谁能求出选择秋游的人数?生:不能啊,条件不充分师:那你能根据图意估计一下,然后补充一个条件,使我们能用今天的知识算出这些人数吗?
一、说教材《分数乘法》是人教实验版六年制上册的分数乘法的第一课时的内容。这部分内容的学习是在学生已经学习了整数乘法的意义很分数加法计算的基础上进行的。在这个内容中,分数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算,只是这里的相同加数变成了分数,同时分数乘整数又是分数乘分数、分数乘加、乘减混合运算的基础上,因此必须使学生切实掌握好。基于以上原因,我确定了如下目标。知识目标:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。能力目标:培养迁移转化的能力。情感目标:培养学生尝试探究,合作学习的好习惯。为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算。教学难点:分数乘整数的计算方法。二、说教法根据新课程理念,学生已有的知识,生活经验,结合教材的特点,我采用了以下的教学方法:
三、情感与态度目标教学重点:在合作讨论的过程中体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中发现信息。教学难点:能从扇形统计图中获得有用信息,并做出合理推断。二、学情分析本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。三、设计理念和教法分析1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己收集信息、分析信息,自主探索、合作交流,参与知识的构建。2、运用探究法。探究的方法属于启发式教学,探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生收集资料,获取信息并合作交流。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)(1)某种菜籽的出油率是36%。(2)实际用电量占计划用电量的80%。(3)李家今年荔枝产量是去年的120%。二、新授1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。(1)计划造林是实际造林的百分之几?(2)实际造林是计划造林的百分之几?(3)实际造林比计划造林增加百分之几?(4)计划早林比实际造林少百分之几?2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。3、学生自主解决“实际早林比计划增加了百分之几”的问题。(1)分析数量关系,让学生自己尝试着用线段图表示出来。
1、课件出示教材例1的座位图。教师说明分组方法,从左往右依次为第1列、第2列、第3列直至第6列,从前往后依次为第1行、第2行直至第5行。请学生用自己的语言说说张亮的位置,要求尽可能简洁。当多位学生说完之后,教师组织全体学生评价哪种方法最简洁?当学生一直认同第2列第3行是最简洁的描述方法时,教师板书:第2列第3行。学生主动参与,体会最简表述方法的优越性。2、此时,教师再提出你能用这种方法描述王艳的位置吗?赵强呢?及时反馈,利用最简方法描述其他两位同学的位置。3、让学生完成一个记录游戏:教师快速地报出第几列第几行,让学生记录。学生可能记录不下来。这时教师提出我们要进一步简洁,不用文字,用数字和符号把它的位置记录下来。通过游戏使学生感受到“数对”产生的必要性。学生用自己的方式填写,教师可以选取几位代表在黑板上写,然后提出这些同学记录方法不一样,但有什么相同的地方?引导学生观察发现都有数字2和3,都表示第2列第3行,
(二)归纳小结。设问:今天学了什么?什么叫轴对称图形?怎样判断轴对称图形?什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)现在能把两侧大小不同的蝴蝶图画成一模一样吗?(教师拿着新课引入时的不对称的蝴蝶图)(前后呼应,解答课前疑难,目的是检查学生活用知识的情况。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。附板书设计:轴对称图形如果一条图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
指导思想:《应有格物致知精神》是义务教育课程标准实验教科书九年级上册第四单元第二课,本单元编排的课文全是议论文,除了让学生掌握议论文的一些常识,培养阅读议论文的兴趣外,更要明白教材目标。“格物致知”是一篇漫谈式议论文,除让学生掌握基本知识和技能外,更重要的是让学生热爱科学、勤于探索、勇于创新,培养学生有服务人类,回报于社会的高尚品格,树立正确的人生观念。本文是丁肇中在1991年10月,在北京人民大会堂举行的“情系中华”大会上演讲的一篇演说词的一部分,是一篇漫谈式的议论文。作者针对中国学生的实际情况,结合传统的中国教育状况,分析了实验精神在科学上的重要性,并联系现实和自己的学习经验,提出论点:我们应该有真正的格物致知精神,即需要培养实验的精神,不管研究自然科学、人文科学还是在个人行动上,我们都要保留一个怀疑求真的态度,要靠实践来发现事物的真相。本文主要运用摆事实讲道理的论证方法,说理透彻,语言准确。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.2 区间教 学 目 标知识目标:1、理解区间的概念 2、掌握区间的表示方法 技能目标:1、能进行区间与不等式的互相转换 2、能在数轴上正确画出相应的区间 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.4 二项分布. *创设情境 兴趣导入 我们来看一个问题:从100件产品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次数用表示,求离散型随机变量的概率分布. 由于是有放回的抽取,所以这种抽取是是独立的重复试验.随机变量的所有取值为:0,1,2,3.显然,对于一次抽取,抽到不合格品的概率为0.03,抽到合格品的概率为1-0.03.于是的概率(仅求到组合数形式)分别为: , , , . 所以,随机变量的概率分布为 0123P 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 一般地,如果在一次试验中某事件A发生的概率是P,随机变量为n次独立试验中事件A发生的次数,那么随机变量的概率分布为: 01…k…nP…… 其中. 我们将这种形式的随机变量的概率分布叫做二项分布.称随机变量服从参数为n和P的二项分布,记为~B(n,P). 二项分布中的各个概率值,依次是二项式的展开式中的各项.第k+1项为. 二项分布是以伯努利概型为背景的重要分布,有着广泛的应用. 在实际问题中,如果n次试验相互独立,且各次实验是重复试验,事件A在每次实验中发生的概率都是p(0<p<1),则事件A发生的次数是一个离散型随机变量,服从参数为n和P的二项分布. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
一、教材及学情分析“数学广角”是新教材在向学生渗透数学思想方面做出的新尝试。本课内容重在向学生渗透简单的排列组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。本课内容是学生在小学阶段初次接触有关排列组合的知识,但是在日常生活中,有很多事情是用排列组合来解决的,如:衣服的搭配、付钱时面值的选择等等。二、学习目标及教学重、难点通过对本教材的深入研究,结合新课程的三维目标理念,我确定了如下的学习目标:1.通过观察、猜测、操作等活动,找出简单事物的排列数与组合数。2.经历探索简单事物排列与组合规律的过程,掌握有序地全面思考问题的方法。三、教法、学法设计根据本课教学内容的特点和学生的思维特点,我采用情境教学法、操作发现法、直观演示法。为使学生能够有效地学习,主动的建构知识。我采用合作交流法、动手操作法、自主探究的学习方法,让学生在一系列活动中感知有顺序的搭配。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。