(一)领导高度重视,反应行动迅速。全国扫黑除恶专项斗争开始后,市委、市政府立即召开专题会议进行研究和安排部署,对照中、省扫黑除恶专项斗争工作要求,确定了全市扫黑除恶专项斗争工作目标(一年大见成效、两年健全机制、三年天蓝地净),成立了扫黑除恶专项斗争工作领导小组及其办公室,具体负责组织实施工作,县区和市直各成员单位也相应成立了工作机构。市委、市政府联合印发了《延安市开展扫黑除恶专项斗争实施方案》,市扫黑办制定了《扫黑除恶专项斗争组织机构及工作制度》,建立了线索排查、信息报送、案件分流、案件会商等工作制度,保障扫黑除恶斗争专项工作有效实施和有序推进。市法院、检察院、公安局采取引进来、走出去等办法对干警进行业务培训,提高基层干警执法办案水平。市检察院推行“七快”联动工作机制和重大黑恶势力犯罪案件会商机制,市法院对黑恶案件办理采取“五定一包”(定办案人员、定督办领导、定办案期限、定目标责任、定奖惩办法),提高办案质效。
一、关于“移风易俗” 移风易俗,成语,意指改变旧的风俗习惯。出处:《荀子·乐论》:“乐者,圣人之所乐也,而可以善民心,其感人深,其移风易俗,故先王导之以礼乐而民和睦。” 新中国移风易俗活动起源于1952年爱国卫生运动,七十年代后扩展到改变旧的风俗习惯,特别是红白事的新事简办。反对索要彩礼,反对大操大办,提倡勤俭节约。 风俗本是一国一民族或地区族群传承性的生活文化,一种独特的非物质文化遗产。在社会上,它展现为五彩缤纷的风土人情。风俗的多样性,往往是因自然条件和人性的不同而造成的行为规范差异,我国自古以来就有“百里不同风,千里不同俗”的精辟见解。但是,随着时光流逝,时代发展,当时流行的时尚、习俗久而久之会发生变迁,尤其是改革开放以来,人民群众的物质文化需求不断增高,生活趋于安逸,原有风俗中的不适宜部分,逐渐显现出来,基本已成为加重群众负担的另一主要形式。
(三)结构不断优化。产业结构由以往的工业、农业主导向服务业主导转变。三次产业结构由2012年的X﹕X﹕X调整为目前的X﹕X﹕X。工业结构深入调整。特别是矿业占规模工业增加值的比重由原来的X%左右降至目前的X%左右,下降X个百分点;园区工业产值占全市工业总产值比重为X%;电子信息、新材料、新能源等新兴产业成为新的经济增长点。消费转型升级加快。吃穿等基本生活型消费向生活享受型消费转变,汽车类消费比2012年增长了X倍;农村消费占比由2012年X%提至X%。投资结构积极变化
(一)强举措,营造良好政策环境。一是增强政策叠加效应。根据中央、省相关政策,立足我市实际,召开全市民营经济发展大会,出台《关于促进民营经济高质量发展的实施意见》,从降成本、助融资、破壁垒、促转型、拓市场、保权益等六个方面制订25项政策措施。市有关部门相继研究制定15个实施细则,形成一系列政策体系,增强政策可操作性。二是加强政策宣传解读。通过电视、报纸、网络等主流媒体和政府门户网站等,采取多种形式,大力宣传和深入解读促进民营经济高质量发展有关政策,提高政策知晓度。三是建立政策落实机制。各级政府部门根据工作推进要求,跟踪分析政策执行情况,定期报告存在问题,共同会商解决办法,确保政策落地见效,提振企业发展信心。
一、硬件设施建设给校园描上“面向现代化”的面纱,激起我们无限的向往。 学校占地面积虽然不是很大,但是教室、办公室、功能室、运动场所设施一应俱全,活动区、教学区、休息区条块分明,总体布局一目了然、科学合理,从进入大门到各区、室走马观花的参观和随意提问中了解到,其教育教学设备的时代性和教育投入的力度的确值得我们感叹和欣赏。从这所学校的规化示意图来看都是高起点、大手笔的杰作,我个人认为这所学校能收到良好的办学效益和社会效益,都有力地证明了投入的必要性与产出可能性之间有着深层次的联系,使得该校在成就教育教学事业上赢在了起跑线上。学习这所学校,我们应该努力争取更多的政府投入和社会投入,加大力度更新教育教学设施,多角度、全方位、有步骤、科学性地规划好学校,建设好学校,为学校的长足发展打好基础、理好思路。
1、灾前 (1)村应急协调小组协调组织应急救援力量进入应急工作状态。按照村应急管理责任分工,各小组长负责各组、各户排除安全隐患。 (2)村后勤保障小分队负责对抢险物资、工具、用品(如雨具、手电、绳索、铁线、铁锹、食品、药品等)进行详细检查,确保备足和性能良好;对生活物资进行购置和清点,确保村民吃、穿、住、医等必要生活条件得到保障。 (3)村抢险救灾小分队负责检查、疏通沟渠、地漏等排水设施,检查、消防各类建筑物、场所安全隐患,确保村民生命财产安全。对灾害可能威胁村民生活的,必须组织转移安置。 (4)村领导组成员负责公布并畅通紧急联系电话,随时关注气象站有关预报信息,及时向村民通报情况。
二、组织方式 生产安全应急预案演练周活动,由镇安监站主办,中心学校、中心卫生院、长运汽车站、森美加油站、移动公司、豪锦化妆品有限公司、新华都购物广场、恒晨超市等单位承办,有关单位负责人、分管安全生产工作的人员、业务骨干参加。 三、活动时间 x月份第三个星期,即x月xx日至xx日。 四、活动内容 组织应急预案培训;开展应急预案演练;进行应急预案评估;落实应急预案演练小结。
(1)组长:负责事故的决策和全面指挥,调动各工区的救援人员、设备、物质等资源。 (2)副组长:协助组长工作,负责事故现场的具体指挥,组织相关人员尽快赶到现场,组织指挥救援工作。 (3)应急行动组:接到现场报警通知以后,第一时间向应急救援小组组长汇报事故概况,并通知各组应急负责人做好应急出发准备工作。 (4)疏散引导组:负责现场警戒、维护秩序、疏导现场闲杂人员及疏导交通,引导救援人员、物资车辆、设备进入救援现场,保护好现场。
一、基本情况 近年来,区政府高度重视农村集体经济发展,紧紧围绕“五水共治”“三改一拆”、美丽乡村建设等重点工作,全力推动农业农村经济转型升级,农村集体经济保持稳步发展,各项经济指标均超过预定的工作目标。 (一)加大财政补助力度。建立村级运转财政补助机制,*年开始连续*年对行政村实行运转补助,累计投入金额*亿元,有效确保了行政村的正常运转。加大对农村地区环境长效管理和农村河道保洁的经费保障力度,每年安排专项资金用于河道路网环境卫生清理,农村生活污水处理、水利等基础设施长效维护,进一步改善和提高了农村地区人居环境。积极落实保障“一事一议”财政奖补项目,*年安排资金*万元支持*个村级公共设施项目建设,加快了基础设施、公共服务向农村覆盖延伸,改善了农民生产生活条件。 (二)实施农村环境整治。*年开始,区政府制定实施三年美丽乡村行动计划,*年对龙坞茶镇*个村实施美丽乡村升级版的整治建设,*年又启动*片*个村、*镇*个村的全域化美丽乡村建设,*、*小集镇综合整治也带动了*等*个村的整治建设。农村地区的环境面貌、设施配套和道路交通得到了有效的提升,为壮大集体经济创造了良好的条件。 (三)开展农村土地流转。从今年年初开始,在*、*地区开展农村土地承包经营权流转工作,累计流转土地约*万亩,并已引进两家规模企业,发展现代农业产业园区。通过现代产业园的引进带动,将提升村集体建设用地和现有房产的潜在价值与经济收益,为村集体经济的进一步发展拓展了渠道。 (四)启动整村连片搬迁。近年来,区政府花大力气、大手笔对*、*部分行政村实施整村搬迁,着力通过引进大项目、大平台,促进农村集体经济发展。*等项目已经确定落户*村和*村,*景区打造和*新区建设将覆盖*村、*村等。通过整村搬迁后大项目的引进,为集体经济的发展壮大带来了前所未有的机遇。
1.项目建设的重视程度不够。部分单位对项目谋划、项目入库、项目建设的重要性认识不够,存在被动应付情绪,对新政策缺乏探查能力,对已有政策缺乏深入研究,项目谋划缺乏前瞻性,不能及时抢抓政策机遇,符合政策的项目没有及早谋划入库,导致招引项目因未提前入库而无法落地,错失了发展的有利时机。项目经办人员变动频繁、业务不精,对项目资金申请工作认识不足,对中央和省预算内项目申报政策缺乏基本了解,在项目申报前期对申报程序不熟悉,申报项目时不了解申报特点与申报范围,项目设计时找不到项目与申报条件的最佳结合点,错失了申报机会。 2.项目审批效率不高。虽然积极响应了国家“放管服”改革,精简了办事流程、压减了办理时限,但项目前期手续繁琐、审批部门多、环节交叉、代办衔接不顺畅,业务审查、专业测量、现场核查等环节不够紧凑等问题任然存在,一些涉及上级审批的事项,如规划调整、土地变性、图纸审查等手续,办理周期仍然较长,严重影响了项目进展。 3.项目前期准备工作不充分。部分项目决策程序不规范,项目安排没有充分考虑用地规划和现实约束性指标,委托编制规划时缺乏预见性,对中、远期发展需求和建设项目用地规划考虑不全面,招引项目落地时,要么不符合规划,无“地”可用,要么不符合投资方意愿,不愿意选,而规划修编程序复杂、耗时长,部分项目业主等不住、拖不起,只能放弃投资。如*新能源汽车销售服务有限公司的新能源汽车充电桩建设项目,总投资*亿元,因现行的城乡规划中没有将新能源汽车充电设施建设纳入规划,致使项目无法投资建设。 4.项目储备不足结构单一。受产业结构调整、实体经济亏损、市场供求关系等影响,社会资本对工业企业的投资意愿下降,加之土地、税收等招商引资优惠政策的清理规范,招商引资的吸引力不断下降,全区现有重大产业项目、高新技术项目、工业项目、生态项目、文旅项目数量少、规模小,总体投资增幅不大,尤其缺少投资超*亿元的重特大项目,工业固投整体缺乏后续重大项目支撑,工业发展后劲不足,文旅项目缺乏特色和亮点,无法吸引和留住游客,项目对产业链和我区经济发展的带动作用偏弱。 5.服务工作有所欠缺。受当前体制机制影响,部门服务规范有余,灵活不够,工作人员业务水平不高,对项目申报人员所咨询的问题有时不能准确回答和一次性告知,造成服务对象多次往返。一些基层的项目帮办人员主体作用发挥不够,缺乏想企业所想,急企业所急的主动服务意识。
(二)强化重点防控,防范外部输入。一是严格管控中高风险地区来红人员。准确把握疫情防控新特点、新情况,开展中高风险地区来返红人员大起底、大排查,对从吉林、广东等中高风险地区来X人员,严格落实7天居家健康监测措施和2次核酸检测措施,1月以来,累计管控中高风险地区入红人员XX人。二是及时管控密接次密接人员。对区内区外推送的确诊病例密接者、次密接者立即用负压救护车转运至集中隔离点,进行14天、7天集中隔离医学观察,同时发挥“三公(工)”流调溯源作用,准确掌握密接者、次密接者等重点人员活动轨迹,阻断疫情进一步传播。截止目前,共摸排密接人员XX名,次密接人员XX名,集中隔离XX人,居家健康监测X人。三是精准摸排区外入红人员。结合区情、乡情、村情凝聚排查合力,采取实地走访、入户排查、电话联系、主动报告等措施开展外省入红人员摸排、数据统计、信息完善、网格管理等工作,严防疫情输入扩散。3月1日起,摸排统计已返红人员X人,赋黄码XX名,红码XX名。 (三)强化监测预警,落实“早发现”机制。制定印发《XX重点人群新冠病毒核酸检测筛查工作实施方案》,全面筛查应检尽检人群、区外返红入红人员、重点场所人员、重点行业从业人员、在校师生,设置核酸检测点XX个,共计开展核酸检测XX人次。督促指导各卫生院、药店、诊所发挥哨点作用,持续加强药店购买“四类药品”登记、追踪工作,确保第一时间发现、第一时间报告、第一时间管控。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
1、在工业经济结构调整中,实现循环经济的基本途径是清洁生产让学生分组课前收集乡土地理中清洁生产的案例,将小组收集的案例写成小组作业。让两个小组到课堂上展示,并画出流程图。2、在农业经济结构调整中,我国大力推行生态农业,以实现循环经济留民营村的生态农业按可持续发展的观点,把保护生态环境和发展农村经济有机结合起来 主要措施:(1)调整产业结构:五业并举,全面发展 各业之间相互补充、相互促进、既保持了平衡,又促进了经济的发展 (2)开展综合利用 促进了粮食、牲畜生产的发展,增加了经济效益,降低了污染,净化了环境,有利农民健康,还改变了农田施肥结构,有效地保护了土地资源 (3)广开源流,开发利用新能源 利用太阳能和生物能,节省了以往购煤的开支,还净化了环境 意义和发展方向
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。