1. 独立负责公众号的运营规划与内容编辑,创建、定位与每日的图文编辑与推送,结合线下营销活动实现公众号从零到千的真实增粉。2. 负责挖掘产品及运营各项数据,通过对数据的分析,发现用户规律。3. 充分了解用户需求,收集用户反馈,分析用户行为及需求,增加各平台粉丝数提高关注度和粉丝的活跃度,并及时与粉丝互动。4. 根据线上线下渠道的特点,用户反馈及转化规律,制定具有针对性的策略来提高用户订单成交量,用户活跃度。5. 负责原创文章的撰写,组织开选题会,确定选题内容和最终选题,紧跟热点策划相关的专题内容,策划相关的活动吸引粉丝,提高阅读。并负责各个节日海报的创意和文案策划。
20xx.01-20xx.12 广州XX网络有限公司 新媒体运营1、负责自媒体平台运营、用户管理、推广策划、活动策划执行、客服安排、素材文案分发;2、负责抖音、快手、微博、B站、百度、今日头条、官网等新媒体平台运营,内容策划执行,数据分析,用户提升,活动策划执行,广告投放等工作。20xx.07-20xx.12 广州XX管理有限公司 社群运营1、搭建和管理用户社群,完成社群拉新、留存、促活等基础运营指标;2、建立并完善社群运营策略,及流程规范,将公司现有资源、项目、渠道与社群结合、制定运营方案;3、深度挖掘用户需求、策划社群运营活动、策划热门话题引导、策划用户福利等,提升用户活跃度和粘性。
1、在本协议失效后,如果本协议中包括的某些保密信息并未失去保密性的,本协议仍对这些未失去保密性的信息发生效力,约束双方的行为。
毒品损害健康,残害生命,对个人、家庭、社会的危害是巨大的。青少年正处于生理发育和心理发展的重要时期,心理防线薄弱,好奇心强、判断是非能力差,容易成为毒品侵袭的人群。据调查,在我国的吸毒中,35岁以下的青少年占80%以上。而且,近年来中小学生群体吸毒现象有所增加。特别是随着“摇头丸”的出现,青少年吸毒人数有进一步上升的趋势,吸毒年龄也更加“年轻化”。如果把毒品比做猛兽,那么它最容易下口的对象就是青少年;如果把毒品比做瘟疫,最容易感染的也是青少年。青少年一旦“染毒”,其身心健康受到的损害,远大于成人。
教学质量是学校的生命线,咱们的老师们都有很强的质量意识,特别是这次教育局组织的六年统考、四年抽考。应该说六年和四年级的八位教师不计个人得失,每天起早贪晚的倾情付出让学校领导感动,让每一位教师佩服。更让人感动的是李丽杰、邹玉红老师忍受着嗓子痛不能说话和嗓子哑说不出话的痛苦依然坚持工作。本学期,我们还成功地举办了数学的“同课异构”和语文的“模课”活动。活动中涌现出了像赵淑萍、江式杰等优秀教师。
三年前,我们怀着对未来的美好憧憬,带着家人与老师的殷殷期盼,兴奋地跨进了心仪已久的美丽的邗中校园。春来春去,杨柳依依,书写无悔年华;燕离燕归,白云点点,唱响人生奋斗的凯歌。微冷的春风淡去了烟尘与伤痛,沉淀在内心的,是缤纷的梦想和那收获前的耕耘与奋斗。蓦然回首,三年寒窗苦读,一千多个日日夜夜,铸就了我们必胜的信念与坚不可摧的意志。我们的目光,从来没有像今天这般坚定执着;我们的思想,从来没有像现在这般成熟饱满;我们的心灵,从来没有眼前这般激荡燃烧。
主题 学习雷锋好榜样尊敬的老师、亲爱的同学们,大家好!963年3月5日,毛泽东同志发出了“向雷锋同志学习”的号召。40多年来,雷锋成为我们社会真情与爱心的化身,成为中国人民可贵的精神财富;雷锋精神刻在人们的灵魂深处,引领着一代又一代人健康成长。同学们,雷锋这个名字你一定不会陌生,但你可知道,什么是雷锋精神?第一,奉献社会。一个人做一件好事并不难,难的是一辈子做好事。雷锋坚持一辈子做好事,一辈子为人民服务,在他身上体现的是一种强烈的社会责任感。一次雷锋外出,在沈阳站换车的时候,发现一个背着小孩的中年妇女车票和钱丢了,就买了一张火车票塞到大嫂手里。大嫂含着眼泪问:“大兄弟,你叫什么名字,是哪个单位的?”雷锋说:“我叫解放军,就住在中国。”“雷锋出差一千里,好事做了一火车”。弘扬雷锋精神,就是要像雷锋那样,把社会责任感和使命感记在心间,随时随地为祖国和人民贡献自己的智慧和力量。第二,刻苦学习。雷锋不仅是奉献的楷模,还是学习成才的典范。他干一行爱一行,干一行专一行,挤出一切可以挤出的时间,努力学习为人民服务的本领。雷锋参军后不久,被分到运输连当汽车兵,他就把书本装在挎包里,只要车一停,他就坐在驾驶室里看书。他在日记中写道:“要学习,时间总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钻进去呢?我们在学习上也要提倡这种钉子精神,善于挤和钻。”
以布卢姆的《教育目标分类学》为依据,我确定了以下几个目标:目标一:理解故事内容,感知不同角度的不同现象。目标二:有表情地模仿任务对话,感受角色转变的乐趣。我将重难点定位为:理解故事内容,感知不同角度的不同现象。幼儿对于高矮并不陌生,要他们说出站在高处看到什么,他们能说出很多,反之,要他们说出站在矮处能看到什么,他们照样说的清楚。但是,他们无法将自己所看到的这些现象连接起来获得角度的概念。他们获得的只是高矮的分开的零碎的感知,从幼儿本身的发展来说,他们化零为整的能力并不强。同时,此故事的主要寓意便是告之我们横看成岭侧成峰的道理,因此,我将“理解故事内容,感知不同角度的不同现象”作为此次活动的重难点。在活动过程中,我通过故事的分段欣赏,对幼儿层层深入的提问,引导幼儿帮助高矮老鼠分别想办法体验对方的世界,同时让幼儿分别扮演高矮老鼠来解决重点,突破难点。为了顺利完成此次教学活动,我做了以下准备:1、与故事有关的几副图案2、高老鼠和矮老鼠的图饰二:说教法纲要中指出:教师应成为幼儿学习活动的支持者、合作者和引导者,在活动过程中应力求形成合作探究式的师幼互动。因此,我采用了游戏法、分段讲述法、提问法等几种教学方法。1、游戏法:纲要指出:应寓教育于生活、游戏之中,使幼儿能在学中玩、玩中学、玩中求发展。在活动的第一环节,我采取了让幼儿游戏的方法,使之初步感受高矮。2、分段讲述法:讲述法是语言活动的基本方法之一,在活动过程中,讲述时我注意到声音的抑扬顿挫,语调的高低,语气的变化来引起幼儿的兴趣。同时采用分段讲述是帮助幼儿更好地理解故事内容,层层深入的思考获得高矮的概念。3、提问法:提问法是指教师利用各种手段激发幼儿积极思维的方法。在活动过程中我通过提问描述性的问题“高老鼠看到了什么”“矮老鼠看到什么”,思考性问题“还会看到什么”等来帮助幼儿加深对故事的理解,同时我注意到请不同层次的幼儿进行作答,充分体现了纲要中的“满足群体需要和尊重个体差异,使每个幼儿都能获得成功的满足感”。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。