活动要求:l、区分能滚与不能滚的物体,比较其异同,知道球体能向各个方向滚动,轮子能向两面滚动。2、通过尝试活动,初步培养幼儿自己发现问题,解诙问题的能力。 活动准备:l、圆球,瓶子,轮子娃娃各一个;一辆没有轮子的汽车。2、收集各种大小纸盒、积木、球、饮料瓶,轮子状的物品及各种玩具车。3、准备三条l—2米左右长的路。 活动过程:一、什么会滚,什么不会滚?1、出示两辆车(一辆有轮子,一辆没有轮子)通过比较,知道轮子可以滚动。①教师以小象笨笨的口吻引出课题。师:“我是小象笨笨,城里的朋友给我送来了一辆汽车,可是我不知道怎样让车动起来,谁能帮助我?”②出示没轮子的汽车,让幼儿说一说为什么不会动?③教师给汽车装上方形的轮子,让幼儿观察,为什么汽车还是不会动。幼:(方的东西不能浪,圆的东西能滚。)④通过比较,让幼儿知道什么才是滚?(连续着向前旋转叫做“滚”)2、自由玩纸盒、积木;轮子等物,引导幼儿将物品分成“会滚”与“不会滚”两堆。师:我有一堆东西,可是我不知道哪些东西会滚,哪些东西不会滚,你们去试一试,然后把不会滚的放到(滚)这个框里,把会滚的放到(滚)那个框中。(幼儿动手操作)
准备:·知识经验准备:幼儿已经认识了一些常见的植物·材料准备:中草药图片·重点:在植物中对中草药进行分类 过程·情境表演“医院”——教师饰“病人”因咳嗽去看病,“病人”不能吃西药所以幼儿饰“医生”开了一贴中草药“川贝止咳露”,“病人”吃后好多了。——小朋友,你们知道医生给我开的是什么?·感知了解 ——多亏医生给我开了中草药治好了我的病。今天还来了许多中草药朋友,大家用自己的好办法也去认识认识它们吗?
活动目标1、引导幼儿自己做小实验,了解“蒸发”以及“雨是怎样形成的”等科学现象。2、通过探索“雨”的形成,理解“梅雨季节”的来历。3、激发幼儿发现问题,并积极探索自然现象的兴趣。 活动准备1、酒精灯、烧杯、玻璃片、火柴等实验工具。2、投影机、故事《小水滴旅行记》、幻灯片、磁带。
2、培养幼儿的发散性思维和动手构建能力。 3、激发幼儿对科学活动的兴趣。 活动准备: 1、常见桥梁图片两幅。 2、从网上下载的各种不同桥梁图片资料若干,电脑一台。 3、积木(每组两篮),作业纸每人一张。每人从家带来的小纸盒两个。 活动过程: 1、出示图片,引出关于桥梁的课题,了解几种常见桥梁的类型。(斜拉桥、拱桥、立交桥)
2.了解动物尾巴的作用。 【活动准备】 歌曲《小画家》磁带、故事《神奇的尾巴》磁带,各种动物身体和尾巴分开的图片(金鱼,松鼠,猴子,燕子,老牛,壁虎) 【活动过程】 一.今天老师给小朋友带来了一首好听的歌曲,咱们来一起听一下吧!(歌曲《小画家》) 提问:1.歌曲中的小画家是谁啊?(丁丁)2.丁丁画的什么?画的怎么样啊?(螃蟹四条腿,鸭子小尖嘴,兔子圆耳朵,大马没尾巴)3.丁丁是不是一个优秀的画家? 教师小结:丁丁做事不认真,没有认真观察,只说大话,所以没有画好,我们小朋友可不要向他学习。
活动准备: 各种常见水果若干、布袋、塑料水果刀、盘子、猕猴桃、黄桃、圣女果活动过程:一、摸水果 教师出示装有各种幼儿熟悉的水果的自制摸宝袋,请幼儿摸摸、说说自己从袋里摸到的是什么水果,它的外形是怎样的?它的味道如何?有没有香味?二、出示水果图案 教师出示某一水果的切面,请幼儿观察它的图案。
2、大胆尝试用身体创造洞洞,体验洞洞的有趣。 活动准备:图片、课件 活动流程与问题设计: 一、联系经验看图讲述 ●意图:联系生活经验,讲述梳理洞洞的已有经验。 1、我们的身体都有许多有趣的地方,今天我们就来找找身体上有没有有趣的洞洞。(出示图片)看看,这两位小朋友身上哪里有洞洞?2、牙齿很坚固,怎么会有洞洞?这个洞洞会给我们带来什么麻烦?3、心上有洞洞,会有什么感觉?什么事会让你感到心痛、难过?、 小结:这些洞洞给我们带来了麻烦、疼痛、难过,我们都不喜欢它们。
2、运用挂图和课件,初步理解并形成“半个月”的时间概念。 3、萌发对月相变化现象的好奇心和探究欲望,感受半个月里月亮形状变化的过程。 【活动准备】 1、兔妈妈和小兔玩偶、课件、单月的日历一张。 2、律动《月亮婆婆喜欢我》 3、《望着月亮吃大饼》故事挂图 【活动过程】 1、谈话导入,激发幼儿的兴趣。 “小朋友,今天我们班来了两位小客人,是谁呀?”(出示玩偶)“打个招呼吧!”“兔公公家盖房子,兔妈妈要去帮忙,小兔只能在家里等妈妈,它会怎么等妈妈呢?”(鼓励幼儿根据自己的想法大胆讲述)“平时,你的妈妈不在家,你会怎样等妈妈呢?” 2、教师完整讲述故事,幼儿欣赏,初步了解半个月的时间概念。 “小兔子怎样等妈妈呢?请听故事《望着月亮吃大饼》。”教师:“兔妈妈要多长时间才回来呢?你们知道半个月时间有多长呢?”(教师出示日历:我们一起来数一数日历,就知道半个月有多长了)除了用数日历的方法,兔妈妈还告诉小兔一个什么好办法呢?
1.认知目标:通过引导幼儿自己动手做实验,从而知道两种颜色加到一起会变成别的颜色。初步培养幼儿的兼容性、发散性和跨越性。2.情感目标:通过在活动中,引导幼儿仔细观察,鼓励幼儿大胆尝试记录实验结果。初步培养幼儿好奇心、冒险性。3.人格目标:通过让幼儿让孩子在活动中团结友爱体验创造的喜悦。培养幼儿团结友爱、自信大胆。4.动作技能目标:通过引导幼儿自己动手做实验,发展幼儿大小肌肉动作。活动准备:1. 物质准备:A.一瓶黄颜色的水。B.每组三个透明的小缸,分别装有红、黄、蓝色三种颜色、及棉签等C.记录材料每组一份,涂色纸若干。D.魔术师帽子。
1、说教材《周末巧安排》是本单元的第2课。相对于第1课已引导学生要学会用心度过长时段的假期,本课侧重引导学生学会安排日常生活中短时段的闲暇时间。作为延续与巩固,教师可以将第1课中学到的方法用于本课,同时也可以对比长时段与短时段安排的不同,让学生逐渐提高合理安排短时段闲暇的能力,增强时间管理意识和自律意识,正确处理学习与休息、娱乐之间的关系,做到劳逸结合,健康成长。学情分析周末对学生来说,是充满期待的, 他们可以户外运动、可以看电影,也可以跟好朋友一起玩,可以做很多自己想做的事情。可是,这么多事情应该怎样合理安排呢?通过本课的学习,我们可以引导学生根据事情的轻重缓急,巧妙地安排自己的周末。此外,有不少学生周末还要上兴趣班,部分兴趣班也并非都是自己主动想上的,为此,学生和父母之间也会产生一些分歧与矛盾。如何看待这些分歧,如何化解矛盾?通过本课的学习,通过老师的指导和同伴的互相影响,相信学生也会从中得到启发。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:能合理安排自己日常短时段的闲暇生活;能意识到合理利用时间的重要性,明白珍惜时间的意义。能够结合生活的具体情况判断自己的行为是否可行,具有管理和控制自己行为的能力;帮助学生养成良好的生活习惯和学习习惯。
古人云:一叶落便知天下秋矣。是秋的诗韵带走了灿烂的春光,是秋的颜色覆盖了绚丽的夏季。于是,一切都是无声地走进了秋的沃野,也正是在这秋夏交融的时刻,带给我们一种崭新的生活体验。今天我要讲的题目是《从“秃头理论”说说养成教育》。哲学上有个“秃头论证”理论,它包含有这样一个问题:一个人少一根头发能否造成秃头?回答说不能。再少一根怎么样?回答说还是不能。这样问题一直重复下去,到后来,回答却是已经成为秃头了;而这在一开始是遭到否定的。这个理论告诉人们“少一根头发”对整头的头发来说是微不足道的,它对事物当前的性质起不到任何影响作用,几乎可以忽略不计。但是,就在这种微不足道的不知不觉的演变中,将引发事物的性质发生质的翻天覆地的变化。与“秃头论证”理论反映的核心内容相同的还有“稻草原理”理论和“蚂蚁效应”理论:“稻草原理”理论认为,往一匹健壮的骏马身上放上一根稻草,马毫无反应;再添加一根稻草,马还是丝毫没有感觉;又添加一根……
环节三案例分析突出难点这一环节,我将用多媒体展示我国反腐行动,将一个个贪污腐败者给予法律制裁的案例和东突分子分裂活动的例子,来得出我国专政的职能。这些例子具有典型性和时效性,能让学生容易从例子中得出知识点,引导学生理解我国的专政是对极少数敌人实行的专政。并通过《反分裂法》的制定,让学生讨论为什么我国既要实行民主职能又实行专政职能,以此来分析民主与专政的关系(区别和联系)。培养学生获取信息的能力,自主学习的能力以及全面看问题的能力,再结合教师的讲授,给学生一种茅塞顿开的感觉。环节四 情景回归 情感升华这一环节,我将设置分组讨论,让学生们分别从人民民主专政的重要地位、“民主”与“专政”这两项职能、改革开放的历史条件下新时期内容三个方面来分析为什么坚持人民民主是正义的事,讨论后每组派出代表来发表各自组的结论,得出我国要坚持人民民主专政。通过小组讨论,使学生学会在合作中学习,提高学生的语言表达和思维能力。
尊敬的老师,亲爱的同学们:大家早上好!我今天讲话的主题是:《争做学校的环保小卫士》。蓝天下迎着初升的晨曦,我们又一次举行这庄严而隆重的升旗仪式。眺望着国旗冉冉升起,耳畔回荡着气壮山河的国歌。此时此刻,我的内心无比澎湃,这鲜红的五星红旗,是我们中华民族的象征,它时刻提醒着我们热爱祖国,热爱和平,热爱自然,热爱环境。我们经常看到许多同学在校园里的各个角落捡拾果皮纸屑;用自己的双手去保护校园环境的优美。然而,我们仍然存在着一些不足:比如,在垃圾的处理上,我们还不能做到科学合理的分类。其实垃圾分类放置也是一种环保——绿色的环保。
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。