解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
一、活动目标: 1、教育幼儿学会如何防雷电。 2、锻炼幼儿对事物的决定潜力和想象潜力,增强幼儿的安全意识。 3、透过表演游戏的形式,让幼儿在玩中学,在学中感受到活动的乐趣,并更快、更好地掌握所学的安全知识。
(一)导入活动: 1.这天,我请来了兔妈妈和她的孩子(小灰、小白),她们要给小朋友们表演节目,请大家必须要仔细看喔。 2.邀请一位老师和小朋友一齐表演。 (二)关键步骤: 1.情境表演: 兔妈妈带两只小兔去森林里采蘑菇。妈妈告诉孩子们必须要在自己身边,不要独自到危险的地方去。小灰兔在妈妈的身边采蘑菇,小白兔悄悄地离开了。它只顾自己去捉蝴蝶了,最后迷了路。兔妈妈找了很久才找到它,小白兔哭着对妈妈说:“妈妈,我错了。以后,我再也不离开妈妈了。
一、暑假来了 1、教师:“小朋友们,明天开始我们幼儿园就要放假了,这个假期叫做暑假。知道为什么吗? 2、鼓励幼儿大胆发表自己不同的见解和想法。 3、教师总结暑假的含义:这个假期是在一年中最热的时间放的,我们叫它暑假,暑:就是热的意思。 二、怎样愉快地过暑假 1、教师引导幼儿:“暑假里你们想做些什么事情呢?” 2、幼儿互相说出自己想做的或是喜欢做的事情。
一.生活中有哪些意外 1.生活当中有哪些意外情况,或者在哪些方面,我们要注意安全?A(个别+补充回答) 比如有:火灾、用电安全、煤气中毒、交通事故、突发病症,遇见被偷被抢等等。 2.遇见这些紧急情况我们能不能慌张?A应该怎样才对?B为什么?C 不要慌张,在情绪上要镇定,因为越是慌张,对事情的处理其实越不利。
【教学目标】1.了解韩愈关于尊师重道的论述和本文的思想意义。2.学习借鉴本文正反对比的论证方法。3.积累文言知识,掌握实词“传、师、从”,虚词“以、也、则、于、乎、所以”等词语的意义和用法,区别古今异义词语。4.树立尊师重教的思想,培养谦虚好学的风气。【教学重点和难点】1.了解文章的整体思路。2.学习本文正反对比论证的方法。【教学方法】教师讲授;学生自主探究;多媒体辅助。【课时分配】两课时。【教学过程】第一课时一、导入并解题初中时我们学过一篇课文叫《马说》,《马说》实际上是“说马”,今天,我们来学习一篇“说老师”,说“从师风尚”的文章,叫《师说》。“说”是一种文体,偏重于议论,可先叙后议,也可夹叙夹议。
【重点、难点及解决办法】1.以乐景写哀,景中寓情,情中显志。从词中可以感受到词人的心情是惆怅的,写的又是寒秋景物,却毫无过去一般旧诗词里的那种肃杀、感伤的“悲秋”情调,词人笔下的秋景是活泼、美好的。原因在于越写山河的壮丽,就越使人感到人民不能主宰大地的可悲,越感到革命的必要。词人正是在这不一致中突出了强烈的革命精神。当然,这里面也含有热爱祖国壮丽河山的感情。2.对比手法的运用。词中含有多种对比,使描绘的形象鲜明,如“万山红遍”与“漫江碧透”主要是颜色的对比;“鹰击长空”与“鱼翔浅底”、“指点江山”与“激扬文字”主要是动作的对比;“同学少年”与“万户侯”是明比;“万类霜天竞自由”与人民的被压迫(未在词中点明)是暗含的对比。
一、谈话导入,激起兴趣1、同学们,今天老师带来了一位新朋友,他是谁呢?(出示课件)赶紧和水博士打个招呼吧!今天水博士将参与我们的活动,大家欢迎吗?2、同学们,在炎炎夏日里,水带给我们欢笑,也带给我们后悔和遗憾,下面我们一起来看看水博士给我们的数据。3、学生观看数据:从数据中,你们了解到了什么信息?
1.制定计划:为使这次活动的开展有章可循,有据可依,要对整个活动过程做了具体而细致的安排。安排好活动分工,使每个学生在活动中都有自己的岗位职责,发挥他们的主人翁作用;准备好器材,训练好技能,布置好场地。 2.落实:让每位学生找出符合本次主题的新旧照片,在照片下标上标题。让电教室培养一位能熟练掌握多媒体教室全套设备的学生,负责音响。由几位班干部负责布置教室,营造一种浓烈氛围。 选择一位有播音经历的学生家长事先按要求录音。选择三位有一定口头表达能力的学生,分别从不同角度通过一幅幅照片以今昔对比方式阐释自己家庭的变化。选择一位善于讲话的学生家长,结合他的经历展示改革开放后的巨大变革。
一、校园暴力害人害己。1、读少年犯写给父母的信,评论:为什么他会成为一名少年犯?2、介绍校园暴力3、学生讲述收集的有关校园暴力的案例,并进行深入讨论。4、讨论交流:在我们身边有没有校园暴力?校园暴力有哪些危害?5、小结:校园暴力其实是一些恶习日积月累导致的,是校园生活中不和谐的音符,其危害和后果是极为严重的,对我们的健康成长构成巨大的威胁。
(一)导入 1、导言:同学们,你们看过足球比赛么?有什么感受?有没有危险呢? (1)学生各叙己见。 (2)教师归纳出示课题。 2、引导学生自主探索:体育课与课间活动应该注意那些安全事项? 学生讨论交流,各自发表。 (二)学习新知识 1、运动前的注意事项 (1)检查自己的身体情况 参加体育活动,首先要了解自己的身体状况,要学会自我监督,随时注意身体功能状况变化,若有不良症状要及时向教师反映情况, 采取必要的保健措施。切忌有心脏病或其他不适合参与体育活动的疾病而隐瞒病情,勉强参加活动。
一、教师讲述案例《变电所玩耍遭电击身亡》1、结合故事进行提问:“你家附近有变电所、高压线吗?你家里有没有电闸、开关?我们应该怎样做才能更安全?”(结合周围环境中的实际情况教育幼儿不乱摸电闸、开关,不在变电所、高压线附近玩耍)2、欣赏儿歌《防触电》居家玩耍,谨防触电;身是导体,水不绝缘;插座接头,容易漏电;切勿乱摸,闸刀开关。