一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
(2) 中国文人的悲秋情结。3.《荷塘月色》中,作者为什么要离开家来到荷塘散步?4. 思考:作者的心里为何“颇不宁静?”(教师补充:写作背景)5. 出门散步后,作者的心情发生变化了吗? 有怎样的变化?6.思考讨论:为什么作者说“我”与“地坛”间有着宿命般的缘分,二者有何相似之处?(阅读1-5段)7.思考:作者从他同病相怜的“朋友“身上理解了怎样的”意图“?三、课堂总结李白说:“天地者,万物之逆旅也。”人生,如同一场旅行,在人生的旅途中,时而高山,时而峡谷,时而坦途,时而歧路。我们或放歌,或悲哭,然而,大自然始终以其不变的姿势深情地看着我们,而我们,也应该学会在与自然的深情对望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁达夫,荷塘月色之于朱自清,地坛之于史铁生,他们从中或得到心灵的慰藉、精神的寄托,或得到生存的智慧与勇气,最终完成精神的超脱。
首先,我们用心工作。在日常工作中用心努力地做好每件事,争取把问题想周到,尽量使自己能做到事半功倍的效果。在财务工作中我始终以提高工作效率和工作质量为目标,力争做到总公司和分公司财务制度统一,积极主动地了解各分公司财务工作中出现的问题,及时上报,及时解决。使得各分公司人员按照__总公司的制度和标准完成每项工作,熟练掌握工作流程,坚持按财务制度办事,保持头脑清醒,及时掌握各公司签订合同和收付工程款项等情况。在工作中发现问题,解决问题,采纳大家提出的合理化建议。
公司成立伊始,我便有幸加入到这个团队,几年来,我并没有为公司做出惊天动地的大贡献,更没取得特别值得炫耀可喜的成绩,我只是努力做好自己的本职工作,尽自己的能力尽快的去完成每一次任务,总结自己的经验,从经验中学习,在失败中成长。当选为优秀员工让我们觉得很自豪与光荣,它印证了我们工作的进步和成绩。同时它也是一种动力,促使我们更加勤奋与努力,去更好地完成每一件事情,为公司创造更大的效益。
1、根据上一阶段的工作,找到当前工作流程中的漏洞,比如是否有本部门无法解决的问题,是否有需要相关部门协助解决而没有具体的人和方法来落实的问题; 2、所有本楼层的员工是否清楚本岗位的工作职责及相应的工作流程,是否有能力做好本职工作及所在岗位需要帮助解决的问题,是否按照相应的要求来做好本职工作; 3、了解本楼层专柜经营中需要解决的问题,例如灯光照明、商品陈列、库存积压等等。
二、继续配合专业化经营,强化损益核算应用。 损益核算工作要在进一步夯实基础工作,细化核算的基础上,强化对核算结果的分析和应用。逐步将损益核算分析制度化、常规化,明确各专业成本控制的重点,引导业务部门关注和应用损益核算成果;在专业考核中逐步采用损益核算数据进行成本收入率等指标考核,提高专业考核的科学性;通过对营投、网运、综合管理等环节进行损益核算,为优化资源配置提供依据。
六、社会保险和福利(一)甲乙双方必须执行国家和地方政府有关社会保险和福利的规定。(二)甲方努力创造条件,改善集体福利,提高乙方的福利待遇。七、劳动纪律(一)甲方依法建立和完善规章制度。(二)甲乙双方必须遵守法律、法规和甲方依法制定的规章制度。(三)甲方有权根据法律、法规和规章制度对乙方进行奖惩。八、甲乙双方约定劳动合同终止的条件如下:九、劳动合同的变更、解除、终止(一)甲乙双方在本劳动合同的有效期内,可以遵循平等自愿、协商一致的原则,依法变更劳动合同部分条款。(二)经甲乙双方协商一致,劳动合同可以解除。其中由甲方提出解除劳动合同的,应按规定支付乙方经济补偿金。
二、修订和完善后勤工作制度 五月份还将进行后勤工作制度的修订和完善。对于后勤工作的`制度,本部门的员工或许还没有意识到其重要性。本部门的工作是琐碎的,而这种琐碎是最容易导致工作开展毫无制度性的。为了避免这种情况的再次发生,本部门在五月份将修订和完善后勤工作制度,以保障后勤工作的正常运行,保证各位后勤部的员工能够有制度可依、有制度可循。希望本部门的领导和员工都积极配合此项制度的修订和完善,大家一起协商制定的工作制度,才最能够有效进行。
2、加强护理质量安全管理,保证年事故发生率为零。制定严格的科室规章制度,定期组织差错事故讨论分析,针对反复出现的问题提出整改意见,杜绝差错事故的发生。利用晨会、护理业务学习等多种形式增强护士的服务意识,做到主动服务,热情接待,细心介绍。各项护理治疗操作要与病人打招呼,采用鼓励性语言,动作轻柔,使患者感觉到亲人般的温暖。
一、为推动住房,带动消费,俱乐部在经营方面主要采取以下措施保证经营持续增长: 1、对住房客人增设了免费的游泳项目,对商务客房推出了每月住房累计满五间赠送泳票一张的优惠活动,以此激励商务公司的订房并对新开业的游泳池起宣传推广作用。 2、针对6月下旬的住房预售低,实行对散客和商务住房赠送早餐,对旅行社调低周末价来吸引住客。
1、继续抓好五年级学生的常规养成教育,培养良好行为。 2、搞好班级卫生工作管理、学生的日常行为培养,争创卫生文明示范班。 3、搞好每位学生的自我保护教育,增强安全意识,形成一定的能力。 4、搞好每位学生的心理健康教育,使其身心都能得到健康地发展。 5、使学生爱科学、学科学,主动探索新知。 6、本班学生奋斗目标
3、公司鼓励员工积极参与公司的决策和管理,鼓励员工发挥才智,提出合理化 建议。4、公司推行岗位责任制,实行考勤、考核制度,评先树优,对做出贡献者予以 奖励。5、公司内不得公开或私底下恶性漫骂、批评、散播不实谣言及挑拨是非,破坏 员工彼此团结与和谐。勿于同事或客户面前谈论他人之不是,亦不得在同事 同仁、客户面前指责他人,主管、客户及公司间任何之不是,一经查实,定 严惩重罚之。
这样先让学生自读自悟,再在小组讨论交流,就真正达到人人动口读书,用心体验,实现人人自主学习,而不让小组合作学习成为个别优秀学生的一言堂,从而提高小组合作、探究学习的效率。达到设计理念中引导学生自主、合作、探究学习,培养学生自主、合作、探究学习的能力。
由于这些句子中的词语都是学生较好理解的词句,于是我没有抓住“细长” “长满”“雪白”等词语来一一讲解,我通过让学生反复地来体会出小葫芦的可爱,有指名读、再指名读、齐读。直到读出小葫芦的可爱为止。在引导朗读时,我设计了许多的激励语,如:谁愿意再来读一读这两句话,读出小葫芦的可爱,读出你的喜爱;听出来了,你有点喜欢小葫芦,有更喜欢小葫芦的吗?
让学生在自主研读的基础上,了解对话,与老屋进行情感交流,从整体上感受文本情感的变化线索,感受老屋心情变化的过程,初步感知老屋美好的心灵。使学生思维得到发展,情感得到尊重。