一、说教材 《王戎不取道旁李》是统编教材小学语文四年级上册第八单元中的一篇精读课文。课文写王戎通过仔细观察和分析,推断路边李树上的李子是苦李而不取的故事。在故事中,王戎年仅七岁,就能根据环境来进行分析,充分赞扬了他的聪明,善于观察和思考。启示我们也要像他一样,细心观察,勤于思考,根据有关现象进行推理判断,避免不必要的错误。二、说教学目标: 1.认识3个生字,会写5个生字。2.正确、流利地朗读课文,背诵课文。 3.能借助注释了解课文大意,并用自己的话讲故事。4.理解“树在道边而多子,此必苦李”的原因。三、说教学重难点:1.能借助注释了解课文大意,并用自己的话讲故事;理解“树在道边而多子,此必苦李”的原因是教学的重点。2.体会王戎的仔细观察,善于思考、分析是本课难点。
能够担任我们学院的重点团队之一的主要负责人,这让我感到十分任重而道远,毕竟是第一次带领团队参加三下乡实践活动。团队组织得是否得当,工作分配是否合理,还有住食问题、安全问题等都是我们队长要考虑的。因为怕自己无法胜任这个职位,自信心起初当然会受到一定的打击。为了能够让这次的活动做到尽善尽美,在出发前,我对所有的队员做了思想工作必须特别能吃苦,特别能贡献,在服务大众的同时,培养自身的社会实践能力。并且让各个队员做好准备工作和工作展望。准备工作如期进行,大家都有了大概的工作理念。自然地,充分的工作准备,不仅给予了我极大的自信心,而且还使工作顺利地展开。
尉氏鸭蛋及养鸭基地贾鲁河畔尉氏烩面是河南烩面的一个重要分支,与其它地方不同的是尉氏烩面是羊肉浓汤锅中下面并取汤,尉氏烩面是以独家祖传秘方调制的香料配上滚滚的羊汤而成。放入羊肉丁、葱花、香菜或是五香菜,芝麻酱,同时以个人口味放入用牛羊油泼的油辣椒,浓香味美、回味无穷······人们说到尉氏县洧川镇,首先想到的一定会是洧川豆腐。有许多人也是因为洧川豆腐,才认识了洧川镇。因为这小小的豆腐在洧川镇的周边县市实在太有名了,迄今已有2000多年的历史。 洧川豆腐与众不同之处在于其表面呈琥珀色,切刀处为纯白色,韧性十足,能用麻绳串起来,可用秤钩挂着称,放在锅里越煮越筋,烹炸煎炒则风味各异。由于洧川豆腐的制作一直采用传统工艺,2011年,洧川豆腐被评为河南省非物质文化遗产。
垃圾分类剧本第一幕人物:大妈,大爷,中年妇女(一个垃圾桶散发着阵阵恶臭,垃圾满溢出来,路人无不捂住口鼻加快步伐走过)下楼扔垃圾的大妈:(用南京话,如果不妥可以改成普通话)妈哎,这个垃圾桶,几天么得清啦?乖乖,真是臭死得了。一旁路过的老大爷:(用南京话,如果不妥可以改成普通话)是哎,上次街道派人来换了新垃圾桶,大家都蛮高兴滴,你看看这才几天啊,就这个样子了。我看啊,那个新搞的什么红黄蓝绿的垃圾桶,就是图个好看。下楼扔垃圾的大妈:(用南京话,如果不妥可以改成普通话)街道不是说要搞什么垃圾分类嘛,我看一得儿作用都么得,垃圾照样乱摔。你看看那个垃圾桶,前几天还新崭崭的怪好看,现在都成什么样子啦?一位中年妇女:垃圾分类的话,就太麻烦了吧。像我们这群人,平时要工作,回到家要带孩子,还有一堆家务要干再做这样细琐耗时的分类,谁还有时间休息啊?一旁路过的老大爷:(用南京话,如果不妥可以改成普通话)我们老年人倒是有空,就是不知道怎么分类。再说这垃圾桶上的标志也不清楚,走远一得儿就看不见,欺负老年人视力不好还是啊?
社团,这是一个我们并不陌生的词汇,自从我们来到学校的第一天起,我们就对社团有了很深的印象,社团是我们学生自己的组织,我们每个人都有自己的兴趣爱好,拥有共同爱好的同学走到一起,结成了兴趣社团,拥有不同爱好的同学纷纷走到一起,就组成了七中精彩纷呈的社团大家庭。社团生活已经成为了同学们校园生活的一个重要部分。我们的大七中拥有各种各样的学生社团。在学校的大力支持下我们先后创办了文学社,象棋社,天文社,机器人社,动漫社,模拟飞行社,话剧社,3D打印社,街舞社等等社团,只要我们是一个有兴趣爱好的人,总能在大七中找到相应的社团。当然,如果现有的社团没有满足你的兴趣需求,你也可以向学生会申请成立一个新的社团,去发展更多与你志同道合的人。加入社团的大家庭,你能够与其他同学一起合作建设自己的社团组织,能够通过共同的兴趣爱好结识更多的朋友,能够让你有机会在你感兴趣的领域从菜鸟级玩家发展为骨灰级玩家,能够开拓更广阔的视野而不是仅仅做一只井底之蛙……总之,加入社团,你将深刻体会到“我的爱好我作主”的乐趣。
1、课件出示教材第12页图片。学生思考问题,当你们遇到这样的情况时,你们会怎么做?学生活动;学生讨论交流。教师小结:孩子们,你们的做法非常正确。我希望你们能够按照自己说的那样去做,成为当之无愧的开心果。2、课件出示教材第13页情境图(扫地的妈妈咳嗽;唉声叹气的爸爸;发怒的爷爷;哭泣的小妹妹。)请同学们猜一猜这些人遇到了什么情况?你们是怎么判断出来的?你们会怎么做呢?学生活动:学生思考后畅所欲言。学生1:通过观察动作,我发现妈妈边扫地边咳嗽,然后我会帮助妈妈扫地,让妈妈休息。学生2:通过观察表情,我发现爸爸遇到不开心的事,然后我会给爸爸讲笑话,逗他开心。学生3:通过观察表情,我发现爷爷很生气,然后我会帮爷爷捶捶背,让爷爷放轻松。学生4:通过观察表情,我发现小妹妹在哭位,然后我会开导她,哄她开心。教师总结:同学们说得很好。我希望你们以后遇到类似的情况时,能够及时给他人带去快乐,做个“开心果”。
4. 今天我们继续学习《富起来到强起来》 。 活动一:了解社会主义核心价值观1. 看过了视频,接下来由各个小组与我们分享他们在课下准备的核心价值 观小品,每组表演时,剩下的小组猜测表演的是哪一个核心价值观并在活动评 价单上进行评分。2. 教师总结:“精神文明建设使人们的生活更美好”教师引导学生:精神文明建设搞好了,人心凝聚,精神振奋,各项事业才 会全面兴盛。活动二:走进新时代,怀揣中国梦。1. 播放“中国梦”优秀少儿演讲视频。2. 阅读课本,交流感想。 活动三:争做时代好少年1. 回顾各小组的表演,把其中所有的不良习惯和闪光举动逐个挑出来再次 强调。2. 小组交流班级内部常见的坏习惯。教师总结。 总结延伸:通过本节课的学习了解到青少儿应积极投身于社会主义精神文明建设的伟 大实践中去,做新时代的好少,做新时期中国先进文化的传播者。
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
解:方法一:因为DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因为DF∥AC,所以四边形DFCE是平行四边形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因为DE∥BC,所以∠ADE=∠B.又因为DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计(1)相似三角形的定义:三角分别相等、三边成比例的两个三角形叫做相似三角形;(2)相似三角形的判定定理1:两角分别相等的两个三角形相似.感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.
合探2 与同伴合作,两个人分别画△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此时,∠C与∠C′相等吗?三边的比 相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试.四、导入定理判定 定理1:两角分别相等的两个三角形相似.这个定理的 出 现为判定两三角形相似增加了一条新的途径.例:如图,D ,E分别是△ABC的边AB,AC上的点,DE∥BC,AB= 7,AD=5,DE=10,求B C的长。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(两角分别相等的两 个三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、学生练习:1. 讨论随堂练 习第1题有一个锐角相等的两个直角三角形是否相似?为什么?2.自己独立完成随堂练习第2题六、小结本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理.七、作业:
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。