9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
一、工作目标全市各级民政系统要充分认识秋冬疫情防控的重要性、长期性和艰巨性,强化底线思维、风险意识、问题导向,抓紧在民政系统内补短板、强弱项、堵漏洞,抓紧推进应对新冠肺炎秋冬季疫情防控的各项工作,严格有效防范疫情反弹。二、基本原则坚持疫情防控领导体制、战时机制、指挥体系不变,坚持常态化防控和局部应急处置相结合。按照“指令清晰、系统有序、条块畅达、执行有力”要求,进一步完善多点预警、应急指挥机制。针对疫情的不同风险等级和相应级别,提出应对处置意见和方案。在市疫情防控指挥部的统一领导下做好疫情防控工作。
教材分析:本课是一个实践活动课——制作年历。这节活动课是学生掌握了年、月、日知识后的综合应用。在制作过程中,学生会输出大量年、月、日的知识,经历从年具体到月再具体到日的过程。体现了年月日之间的内在联系。这节实践活动课可以说既是对年、月、日这一单元知识的总结,又体现了数学的应用性与趣味性。学情分析:三年级的学生具有一定的动手操作能力;有一定的小组合作意识和能力;具有一定的观察、发现、分析、交流和搜集资料的能力;同时还具有一定的生活经验,比较关注自己周围的事物,对自己熟悉的事物比较感兴趣,喜欢关注“有趣、好玩、新奇”的事物等。这些都为本次活动的学习得于顺利开展奠定了基础。根据以上分析,我为本课设定以下几个活动目标:知识与技能目标:通过活动复习巩固本学期所学的年、月、日的知识。
2、内容内在逻辑本单元是九年级下册最后一个单元,从学生个体生活、家庭生活、学校生 活、社会生活和国家、世界,最终回到青少年自身,既是前两个单元的延续, 也是对九年级乃至初中阶段学习内容的承接和提升。第五课“少年的担当”主要引导学生与时代同步,走向更广阔的世界,在 与外部世界交往中丰富自己的经历、拓宽自己的视野,理解青少年具有国际 视野和情怀的重要意义,明白当代少年的历史责任是时代赋予的,理解青少 年全面提高个人修养的意义;第六课“我的毕业季”中设计了“学无止境”和“多彩的职业”,帮助学 生知道学习生活中出现的各种压力,理解学习的必要性和重要性,能够在实 践中学习,树立终身学习理念,知道不同劳动和职业具有独特价值,理解爱岗 敬业的重要性,,做好自己的职业规划和准备,能够践行社会主义核心价值观。第七课内容基本逻辑是立足当下、回望过去、展望未来。引导学生反思个 人成长的维度和方式,理解个人成长的关键,明白过程和结果的辩证关系,了 解初中生活之后的发展路径与内容,理解学习和实践的关系。激励他们树立 远大志向,做有自信,懂自尊,能自强的中国人成为中华民族的栋梁。
六、说教学过程(一)创设情境,激趣导入 一堂课的开始,为了使学生尽快地进入学习状态,在情境创设中,应该做到新颖,要让学生感受到一种新的情境,从而产生好奇心,达到集中注意力的目的。教学开始,我首先创设情境,提出了两个问题:1.如果你在大街上迷路了,你会怎么做?2.如果你在野外迷了路,你又会怎么做?【设计意图】这两个问题的提出让学生区分在不同的地点迷了路要用不同的方法。然后我顺势导入课文:我们来学习课文,看看如果在野外迷了路,有什么办法分辨方向。(二)初读课文,整体感知 1.让学生自由读课文,要求把字音读准,把句子读通顺。然后老师范读一遍,让学生注意听老师是怎么读的,如字音、节奏等。2.再次自由读课文,按着老师的方法读诗歌,然后把本课的生字读一遍。【设计意图】这样,学生对于课文的生字和大概内容就有了一个整体印象,培养了他们的自学能力。
今天我说课的内容是:小学二年级数学上册第五单元“2—5的乘法口诀”的第5课时《回家路上》。本节课是在已有知识与经验的基础上,让学生进一步体验乘法,掌握“用2-5的乘法口诀解决问题”,意在培养学生建立、运用数学模型来解决相关问题能力,从而让他们感受到数学知识与生活实际的联系。基于以上教学内容,我作了如下的教学设计:本节课是在完成了“2---5的乘法口诀”的基础上,使学生学会“用2-5的乘法口诀”解决问题。以回家路上作为主要线索,并通过以下活动实现教学目标。1、创设“回家路上”的问题情境,引导学生提出本节课的一些数学问题。2、通过自主探究,引导学生建立“用乘法口诀解决问题”的数学模型。3、运用所建模型,解决相关问题,并通过练习,让学生感受数学简捷思维的优势和广泛应用的价值。
教学流程:一、游戏导入,创设情景好的开始是成功的一半,教师教学开始时,让学生作一个辨认的方向的小游戏,能最短时间内吸引学生注意力,并有效的对旧知识进行了复习。接着教师创设了一个学习情景,帮助迷路的小朋友找到路,让学生在贯穿始终的情景中进行学习。二、讲授新课教师利用多媒体软件出示一张路线路,让学生通过仔细观察,描述出通过路线图如何坐车。在这里教师应对一些常识性的东西进行简单的讲解,譬如出发的起点,终点,坐车坐几站。学生通过小组交流合作进行自学,在小组内交流自己的意见和看法,当遇到较难的问题时,教师可适当引导,但主要还是学生通过自己观察和小组内的交流得出正确的答案,这样才能培养学生的自学能力。三、巩固练习,拓展思维课堂练习是整个教学环节中必不可少的一个部分,教师设计练习时,必须要考虑到学生的共性和个性,课题练习是针对全体学生的,这就是教师必须要考虑的共性。个性则是教师要注意学生间的差异,因材施教。
一、说教材我所上的课是人教版数学四年级下册第二单元《位置与方向》第四课时的教学内容。在此之前学生已经掌握了根据“上、下、左、右、前、后和东、南、西、北等八个方向描述物体的相对位置,能够根据方向和距离两个条件确定物体的位置,能够根据方向和距离,在图上绘出物体的位置。已能体会到位置关系的相对性。本节课在此基础上使学生学习在位置变化的情况下判断行走的方向和路程,练习描述简单的路线图,在做练习时让学生根据方向和距离,绘制简单的路线图。教材在编排上结合班级生活实际,了解确定位置的重要性;提供丰富的活动情境,帮助学生掌握确定位置的方法。本课的教学目标是:知识技能目标:能用语言描述简单的路线图。过程方法目标:在合作交流中能绘制简单的路线图。
13:00—13:10:大会进行第一项。音乐停,鞭炮响(背景鞭炮声)。主持人宣布员工大会开始,向参会的全体员工介绍出席大会的公司主要领导同志,并鼓掌欢迎;(员工欢迎礼毕)请总经理致《开幕辞》
20:00 20:05:川剧变脸神奇的蜀中绝技,几百年的中华艺术瑰宝,让您身历其境的体会传统艺术源远流长,亘古不灭的艺术魅力。三个人同时在舞台上演绎变脸绝活更为精彩,在舞台下面和观众零距离接触,体验变脸的魅力。(男1人)
模仿歌曲《东北人是活雷锋》唱腔,突出东北四个分部。并在各分部唱词的时侯分别显示各分部突出所在地区特色的幻灯片。
年会开始前,年会筹备小组成员必须确保每人持有一份年会流程具体执行方案。
备注:1、在节目演出期间,每半个小时穿插一次幸运观众的抽奖,每次抽取2位幸运观众共12位
(1)年会策划及准备期( 月 日 至 月 日):本阶段主要完成通知、节目收集、主持人确定。 (2)年会协调及进展期( 月 日至 月 日):本阶段主要完成节目安排表、礼仪小姐确定、音
节目预演:这个环节非常之重要,因为大家都不是专业的演员,因此,总指挥必须提前了解整个活动的全部,以便提前预知哪些环节需要注意,哪些环节需要增删,并能保证现场的有序进行等。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。