1、 如图4-25,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流2、 画一个半径是2cm的圆,并在其中画一个圆心为60º的扇形,你会计算这个扇形的面积吗?与同伴交流。教师对答案进行汇总,讲解本题解题思路:1、 因为一个圆被分成了大小相同的扇形,所以每个扇形的圆心角相同,又因为圆周角是360º,所以每个扇形的圆心角是360º÷3=120º,每个扇形的面积为整个圆的面积的三分之一。2、 先求出这个圆的面积S=πR²=4π,60÷360=1/6扇形面积=4π×1/6=2π/3【设计意图】运用小组合作交流的方式,既培养了学生的合作意识和能力,又达到了互帮互助以弱带强的目的,使学习比较吃力的同学也能参与到学习中来,体现了学生是学习的主体。
第一道例题提示学生把地基看成一个几何图形,即正六边形,逐步引导学生完成例题的解答。例题1:有一个亭子它的地基是半径为4米的正六边形,求地基的周长和面积(精确到0.1平方米)。第二道例题,我让学生独立完成,我在下面巡视,个别辅导,同时我将关注不同层次学生对本节知识的理解、掌握程度,及时调整教学。最后,引导学生总结这一类问题的求解方法。这两道例题旨在将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想的应用。(七)、课堂小结(1)学完这节课你有哪些收获?(八)布置作业:我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
各位老师,亲爱的同学们,大家好!紧张的一个学期接近尾声了,我们又迎来了盼望已久的暑假。怎样过好这个长假呢?我们有太多的设想与计划,我们有太多的欣喜与希望。可是,这一切,都是建立在安全的基础上的。因此在假期中,我们每一个同学都必须提高安全意识,学会自我保护。今天,我在这里要再三重申和提醒大家:安全是生命之水,文明是幸福之源!假期一定注意安全,希望大家不仅要记在脑子里,更要落实到行动上。希望同学们从以下几个方面做起:1、防溺水事故:溺水事故是夏季在安全方面存在的隐患,因为每年在这个季节里我们的周围都会发生许许多多令人惨痛的事故和教训,并且这些教训往往是以生命的失去而作为代价的;而对于一个家庭来讲,孩子生命的失去往往就意味着一个幸福家庭的破裂甚至毁灭。今天,我再次重申,绝对禁止到危险水域玩水。由于天气炎热,这个问题最容易出现,请同学们务必引起注意,坚决做到不在水库或深水区玩耍;不准与同学结伴到无安全设施、不熟悉,无救护人员的水域游泳。游泳时一定要有家长的陪同。
2、内容结构本单元由导语、第七课“中华一家亲”、第八课“中国人中国梦”组成。每 课各设两框。单元导语首先对“和谐”的内涵作了分析。其次,导语阐明中华民 族是一个大家庭,我们要像爱护自己的眼睛一样爱护民族团结,要加快民族地区 经济社会文化发展,促进民族团结。我们要坚持“和平统一、一国两制”基本方 针,实现祖国统一。再次,导语揭示了中国梦的意义和价值,提出实现中国梦的 客观要求。最后,导语将中国梦的实现与当今时代相关联,阐明了实现中国梦与 做自信中国人的内在联系,提出青少年要与祖国和时代共成长的现实命题。第一框“促进民族团结”。第一 目介绍了我国多民族的基本国情和我国的民 族政策,重点落在“加强和巩固民族团结,维护祖国统一,是中华民族的最高利 空。第二目通过事实描述、原因分析,阐述民族地区经济社会文化建设取得重大 成就、人民生活不断改善的事实,引导学生分析取得这些成就的原因,重点落在 “维护和促进民族团结,是每个公民的辨圣职责和光荣义务”。本框从我国多民 族的国情以及民族地区经济、社会和文化发展的角度谈民族团结的重要意义,为 下一框讲述“维护祖国统一”打下基础。
10.2022 年 4 月 16 日 9 时 56 分,太空“出差”的 3 名宇航员安全顺利出舱,重 回地球的怀抱,神舟十三号载人飞船实现了多个“首次”,不断刷新中国航天 科技的新纪录,展现了中国航天科技的新高度,再次向世界展现出自信和自强。 这份自信的根源是 ( )A.弘扬了中国精神 B.坚持了中国特色自主创新道路C.凝聚了中国力量 D.坚持了中国特色社会主义道路、理论、制度和文化二、非选择题【春晚传情 中华同心】11.“你是中国的母亲,孕育着中国的奇迹,牵系千百年的呼吸,澎湃着中国的 生命 … … ”,虎年春晚,来自海峡两岸暨香港、澳门的四位歌手共同演唱的歌曲 《黄河长江》,唱得大家心潮澎湃。歌曲中,情感深沉的歌词,字字饱含着对祖 国山河的热爱;高亢激昂的旋律,传递出黄河长江穿越古今的力量。(1) 海峡两岸和香港、澳门的四地歌手在春晚的舞台上携手共唱、深情演绎, 向我们传递了怎样的信息?(2) 为了促进海峡两岸和香港、澳门四地的文化相融,你可以提出哪些合理化 建议?
2 . 内容内在逻辑第七课 《中华一 家亲》 主要介绍了我国的民族政策和解决港澳台问题的基本 方针的基础上 , 进一步阐述新中国成立以来为促进民族的繁荣我国在少数民族地 区发展上所实施的举措以及为实现祖国的统一我们所做的努力; 第八课 《中国人 中国梦》 是九年级上册最后一课 。在介绍了经济建设 、政 治建设 、文化建设 、社 会建设 、 生态文明建设等内容后 , 本课对九年级上册内容 进行了总结与升华 。第七课第一 框 “促进民族团结”主要是帮助学生了解我国的民族政策 , 为促 进民族繁荣所采取的举措及成效 , 明确维护民族团结是我们应尽的责任 。第二框 “维护祖国统一 ”主要是帮助学生理解维护祖国统一 、 反对分裂的原 因及做法 , 帮助学生了解 “一 国两制”的基本内容及现实意义 , 特别是关于台湾 问题的解决 , 让学生明确维护国家统一是每个公民的神圣职责 。
(一) 课标要求中华文化崇尚和谐,蕴含着天人合一的宇宙观、协和万邦的国际观、和而不 同的社会、人心和善的道德观。中国梦是中华民族团结奋斗的最大公约数和最大 同心圆。本单元将“建设和谐中国”作为社会主义核心价值观教育的主题,指出 和谐是国家高强、民族振兴、人民幸福的重要保证,追求和谐价值是中国梦的应 有之义,做自信中国人是对实现中国梦的主体的要求。九年级学生对我国是个多民族国家、中华民族大家庭、维护和促进民族团结 等问题已经具备一定的知识积累。学生能够从爱国情感出发反对分裂,反对暴力 恐怖活动,反对非正义战争,反对阴谋颠覆国家的行为。学生基本了解香港、澳 门回归和台湾问题的史实,对实现祖国统一有着与成人同样的期盼。但是,部分 学生的中华民族共同体意识相对较弱,对于在新时代如何促进民族团结思考不 深。同时,由于大多数学生缺少反对分裂的相关生活,因此,对经验反对分裂的 迫切性、必要性认识不够。部分学生对香港、澳门在新形势下如何继续保持繁荣 稳定、新形势下如何实现两岸统一等问题关注不多。
同志们:今天,我们召开全县财税和项目工作推进会,主要任务是进一步贯彻落实XX市财税和项目工作推进会会议精神,研究分析我县财税、重大项目工作进展情况,找准存在问题,采取针对性措施,坚定信心,攻坚克难、凝聚合力,全力以赴推动经济平稳增长。刚才,先财政局、发改局、经贸局、统计局分别汇报了有关工作,从汇报的情况看,大家都做了很多基础工作,也都落实了任务,明确了责任,但总体看,工作中还存在不少问题。X县长对财税和项目工作进行了具体的部署,我完全赞同,希望大家高度重视,认真对照,采取有力措施,抓好贯彻落实,把各自负责的工作抓好落实。下面,我再强调几点意见。一、务必强化征管结合,全力确保财税收入稳步增长刚才,财政局汇报了我县的财税收入情况。从收入结构看,,非税收入X亿元,下降XX%,占一般公共预算收入的比重为XX%,比上年同期下降X个百分点。应该说,财政收入质量进一步提高,但是,整个财税增幅仍然较慢,财税增收压力仍然较大。我们XX的财税在XX乃至省都是排在前列,如果我们的工作做不好,就会影响到整个XX的工作。