一是资源优势。**地处黄河中游、陕北黄土高原丘陵沟壑区,土地面积广,光照时间长,昼夜温差大,农业资源禀赋优越。光、热、水、气等生态气候条件完全符合苹果优生区“七项指标”要求,处于中国苹果产业带的核心位置。纵横交错的沟壑山川为现代畜牧业发展提供了天然的防疫隔离屏障,吸引了新希望、东方希望、伊利集团优然牧业等企业集团投资建场;1100多万亩洋槐林和500多种蜜源植物,是业界公认国内最大的优质洋槐蜜蜜源基地和全国四大中蜂保护区之一;依托山地资源建成的“95式”日光温室,比川地温室光照**60-90分钟,夜间棚内最低气温提高3-5℃,采光更好、保温性更强;夏季气温凉爽,气候干燥,露地菜品质好,香菇花菇出菇率高,具有反季节生产的优势。
一是积极落实各项就业优惠政策,企业职工得实惠。20**年,落实职业技能培训补贴、职业技能鉴定补贴、创业担保贷款贴息等政策性支出X余万元。二是积极提供人力资源服务,为企业排忧解难。随着县园区企业蓬勃发展,对劳动力需求大幅增加。20**年共举办中小劳务招聘会、企业用工专场招聘会等就业供需对接活动X场次,提供就业岗位X个,求职登记X人次,职业指导X人次,供需双方达成就业意向X余人。三是完善基层公共服务平台,职能作用较好发挥。加强基层公共就业服务平台建设,全县X个乡镇和X个社区成立了人力资源社会保障服务机构,且都建设了高标准的基层人社服务平台,基本达到了基层人力资源市场建设标准。指导乡镇社区积极开展失业调查、就业援助等活动,多渠道开发服务性和公益性岗位,努力创建“充分就业社区”。韩山社区、武江社区被授予“X省充分就业社区”,南塔社区、成仙观社区、东云社区被授予“X市充分就业社区”。
(一)加强组织领导,严格考核奖惩,落实就业责任。我县历来高度重视就业再就业工作,一直将其做为民生工程的重中之重来抓,列入全县综合绩效考核管理目标。每年初将新增城镇就业指标任务分解到各乡镇,按月调度完成情况,年终进行考核评分,有力地保障了目标任务的落实。
二、员工必须佩带胸牌,如胸牌遗失罚款10元,并马上报领班申领。统一着装,着装要整齐,杜绝浓妆淡抹,奇装异服。 三、不能对顾客和同事无礼,不能吵架或打架,不得越权或违规操作,为顾客营造一个轻松和谐的购物环境。 四、店员对顾客要主动服务、面带微笑,举止文明、优雅,顾客离开时要及时整理商品,一定要做到客来开灯,客走关灯。
一脱离题海,回归高考真题。考前一周,适当做题,让自己热热身,保持做题的手感,快速进入考试状态。 二每天坚持,阅读试卷。一旦读出每道题的思路,就读下一道!用这样的方式快速准确地掌握试题信息,在没有时间大量做题的前提下,阅读试卷比做题提分更快! 三调整心态,增强信心。学会自我心理调节。要知道,高考是选拔性的考试,肯定会有人被淘汰。把自己会的答对,对的写完,就不应该再有什么遗憾。更不要盲目攀比,运用积极暗示进行心理调整,增强信心。 四坚持运动,消除焦虑。把自己精力最旺盛的时间调整到与高考相一致的时间段。考前坚持每天运动一小时,通过运动来消除焦虑。
一、 教材分析《敬业与乐业》是部编版中学语文九年级上册第二单元的一篇课文,它是梁启超的一篇有关事业与人生的演讲稿。文章层次清楚、条理清晰、论据充分,发人深思,让学生们体会敬业乐业的趣味。二、 学情分析:九年级学生对议论文体已有了初步的认识,并且已经开始学习写一些简单的议论文。但无论从学生的阅读还是写作来看,学生对议论文掌握的情况都有待加强。本篇课文无论在议论的层次、结构还是方法等方面都是最有代表性的,也是演讲的特点和技巧体现得很明显的文章,因此,有必要学习。三、 教学目标根据教材分析和学生实际能力特点,我确定了如下的教学目标:知识与技能:在反复阅读课文的基础上,找出作者的主要观点,梳理出作者的论证思路,体会并领悟敬业与乐业的精神,从中受到人文熏陶。过程与方法:学习本文运用的多种论证方法,条理清楚地阐述自己的观点。
一、导入新课在《摔跤吧!爸爸》这部电影中,男主角阿米尔·汗为塑造形象先增肥28公斤再暴瘦25公斤,只为了拍好适应不同年龄的角色。不过,为了一部电影付出如此努力,你们觉得是否有此必要呢?(引导学生稍做讨论)是的,有必要,因为这正是他敬业精神的体现,正是他的敬业精神,让他的电影一次次取得成功。敬业,不仅是阿米尔·汗独有的话题,在近代,我国思想家梁启超就已经很深入地探讨了敬业甚至乐业的重要性。今天,就让我们一起学习这位思想家的演讲稿——《敬业与乐业》,在感知先哲思想风采中,去观照自己的学习精神和生活态度,领悟人生价值。二、教学新课目标导学一:认识作者作者简介:梁启超(1873—1929),近代思想家,著名学者。字卓如,号任公,别号饮冰室主人。广东新会人。与其师康有为一起领导了“戊戌变法”。他兴趣广泛,学识渊博,在文学、史学、哲学、佛学等诸多领域都有较深的造诣。他一生著述宏富,所遗《饮冰室合集》计148卷,1000余万字。
课堂教学设计说明求比一个数少几的数的应用题是低年级教学的一个难点.为了分散难点,在复习准备阶段做了孕伏.如:圆比三角形多2个,也可以说三角形比圆少2个.为了突破难点,让学生动手摆、动口说、动笔写,全方位地调动学生的各种感官参与教学全过程,使学生在参与学习的活动中领悟出“求比一个数少几的数”的应用题仍然是把较大数看作两部分组成的,从大数中去掉大数比小数多的部分,就是小数与大数同样多的部分,也就是小数的数值.也可以通过“假设同样多”去透彻地理解比一个数少几的实际意义.确实使学生理解和掌握了这类应用题用减法计算的道理和解答方法.为了让学生进一步加深理解和掌握“求比一个数少几的数”的应用题的数量关系和解答方法,在巩固练习的最后设计了一组对比题目.
一、教材分析用乘法口诀求商是数学计算中的一块重要基石,它在整个计算领域中起着举足轻重的作用。为了让学生掌握好这部分知识,教材根据儿童的认知规律将用乘法口诀求商分为两阶段学习。第一阶段,安排在本册书的第二单元表内除法一:学习“用2~6的乘法口诀求商”,该单元着重让学生掌握求商的一般方法。第二阶段,安排在本册书的第四单元表内除法二:学习“用7、8、9的乘法口诀求商”,本单元着重让学生在熟练掌握用口诀求商一般方法的基础上,综合运用表内乘除法的计算技能解决一些简单的涉及乘,除运算的实际问题。“用7、8的乘法口诀求商” 即是本单元的第一课时,也是在学习“用2~6的乘法口诀求商”的基础上进行教学的。本节课中,教材通过一幅学生熟悉的“欢乐的节日”的主题图,引出要用除法计算的实际问题。通过解决具体问题,使学生体会求商的计算是解决问题的需要,用乘法口诀求商是帮助人们解决实际问题的工具,因此学好这部分知识是非常重要的。
1、教学内容:人教版实验教材二年级(上册)77页的例4。用乘法解决问题的教学渗透于掌握乘法口诀的教学过程中。教材在注重让学生通过活动探索、理解乘法计算的含义和方法的同时,渗透用乘法解决问题的教学。在教学过7的乘法口诀之后,安排了有关“倍”概念的教学,以及如何用乘法解决有关倍的实际问题。2、教材的重点和难点:教材的重点是理解“求一个数的几倍是多少”就是“求几个几是多少”。教材的难点是用乘法计算的解题思路。3、教学目标:1.进一步加深对“倍”的含义的理解。2.学会运用“求一个数的几倍是多少”的方法解决实际问题,构建解决“求一个数的几倍是多少”的问题的思维模式。3.初步学会分析数学信息与所求问题之间的联系,学会看线段图。
一、创设情境,导入新课教师边放课件边讲故事):今天老师给你们讲一个“猴妈妈分桃”的故事。有一天,一群小猴到山下去玩,走着走着,看到一棵桃树上结满了又大又红的桃,就摘了很多。回家后,猴妈妈看到小猴们拿了这么多桃回来,可高兴了,说:“妈妈分桃给你们吃。”二、合作交流,探索新知1、动手操作,探究方法(1)提出问题。师:小猴摘了多少个桃?准备每只小猴分3个,可分给几只猴子?(板书:12个桃,每只小猴分3个,可以分给几只小猴?)(2)学生列式:12÷3=(3)分一分学生小组合作,动手分一分。(可以用其他的物体代替)(4)说一说分的过程可能有以下几种:第一种:先分给第一只小猴3个桃,再分给第二只小猴3个桃,然后给第3只小猴3个桃,最后3个桃正好分给第四只小猴。……12个桃可分4只猴子。
(二)解决问题,总结方法《新课程标准》主张充分挖掘数学教材潜在的“再创造空间”,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,让学生最大限度地参与数学知识的发现、提出、形成、应用的再创造过程,以促进学生主动的发展。因此我创设了福娃晶晶为迎接奥运会做准备的数学情景,设计了四组有关7、8、9的用除法算式解决的数学问题。1、出示晶晶的问题:(1)做了56面彩旗,平均每行挂7面,能挂多少行?(2)做了56面彩旗,要挂成8行,平均每行挂多少面?(3)做了49颗五角星,平均分给7个小朋友,每人多少颗五角星?(4)准备了27个气球,平均9个摆一行,能摆多少行?2、解决晶晶的问题:让学生根据"友情提示"的要求完成自学内容后再小组交流、全班交流。在交流过程中引导学生观察:56÷8=7和56÷7=8这两个算式,从而发现一句乘法口诀可以计算两个除法算式。
(一)说教材本节课是在学生基本上掌握了亿以内数的读、写方法以及比较两个数的大小和把整万的数改写成用万作单位的数后,用"四舍五入"法求近似数。这部分内容不好总结,但是与过去的旧知识联系紧密。由讲故事引入课题,进而渗透旧知,由复习省略百位、千位后面的尾数求近似数,类推到省略万位后面的尾数求近似数。这样引导,有利于培养学生归纳推理的能力。(二)说教学目标1.能正确的用"四舍五入"法求近似数。2.培养学生比较分析的思维能力,养成良好的学习习惯。(三)说重难点使学生学会如何用“四舍五入”法将非整万的数改写成用“万”做单位的近似数。(四)说教法这部分知识与旧知联系比较紧密,因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新知识的方法,培养学生的归纳推理能力。
一、教学理论依据及设计理念以新课程理念和新课标为指针,依据建构主义理论、学科探究理论和多元智力理论,采用探究式的教学模式来组织实施本节课的教学。学生成为课堂的主体和知识的主动构建者。通过创设多种情境,让学生积极参与、体验、感悟,主动获得新知,并逐步提高学生发现问题、分析问题和解决问题的能力。教师从课堂的主宰变为课堂的主导,是学生学习活动的组织者、引导者和合作者。教学过程是一个发散式的学生自主学习的过程。采用自主、合作、探究式的教学方式,让学生有多元选择,激发他们的潜能,发展他们的个性。二、教材分析1.教材的地位与作用:本框题是《生活与哲学》第二单元《探索世界与追求真理》第六课“求索真理的历程”的第二节内容。本单元的核心问题是如何看待我们周围的世界,该问题也是《生活与哲学》整本书的核心问题之一。
一、教材分析人教实验版高中思想政治必修4第二单元第六课的第二框题。本框题所在单元的核心问题是如何看待我们周围的世界,该问题也是《生活与哲学》整本书的核心问题之一。而对这一问题的解决,单元中最终是由“在实践中追求和发展真理”来实现的。 本框题是所在单元的归宿,是对物质与意识、实践与认识关系的整体呈现与深华,是如何正确看到我们周围世界问题在世界观上的升华,是单元的最基本的知识目标之一。 二、教学目标(一)知识目标:识记真理的含义;理解真理最基本属性是客观性、真理是有条件的、具体的,认识具有反复性、无限性,在实践中认识、发现、检验、发展真理;分析“追求 真理是一个过程”。(二)能力目标:提高比较分析的能力和明辨是非的能力,培养学生具体问题具体分析的能力及用发展观点看问题的能力。(三)情感、态度与价值观目标:学会在现实生活中正确区分真理和谬误,正确对待人生道路上面临的挫折和困难,树立在实践中不断认识、丰富、发展真理的思想。
(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况