教学过程一、导入教师:同学们,今天老师要带领大家到东北地区,去欣赏东北民歌。二、新课教学1、教师:关东支脉音乐的体裁形式和风格特点与齐鲁燕赵支脉有许多相同之处,但又形成了自身的特点。接下来我们通过几首有代表性的作品来找出关东支脉音乐的风格特点。2、教师播放《月牙儿五更》,请学生思考这首歌曲属于音乐民歌中的哪一种。学生回答回忆上节的知识。3、教师:大家能不能说出这首《月牙儿五更》是由什么乐器演奏的呢?学生回答。教师:板胡是我国弓弦乐器。音箱不是蒙以皮革,而是盖上薄的木板或椰壳,形似碗状,琴干琴弓比二胡粗;音色高亢嘹亮。下面我们来听两段音乐,请大家分辨一下是二胡的音色还是板胡的音色。学生回答。4、教师:下面,老师给大家介绍一位男高音歌唱家郭颂,郭颂演唱了很多优秀的民歌,我们来欣赏一首由他演唱的《月牙儿五更》。学生欣赏乐曲教师:由此我们可以看出很多器乐作品都源于优秀的民歌,民歌是我们源于创作的源泉。让学生了解民歌是音乐创作的源泉。三、课堂小结教师:同学们,今天这节课我们欣赏了关东支脉地区的音乐,我们了解了它的风格特点,也了解了很多的音乐创作都来源于民歌。希望在课下,同学们能够多去了解欣赏民歌,让民歌的灿烂文化一直发扬光大。
2、发展幼儿的想象力和初步的合作能力。二、活动重点:根据纸盒外形想象装饰。三、活动难点:用装饰、拼搭的形式表现出自己的家。
一、导入。1. 组织游戏《猜猜我是谁》,请幼儿闭上眼睛用手触摸被猜幼儿的脸,然后说出被猜幼儿的姓名,并引导幼儿说说你是怎么发现的。(如,他的脸比较长、他的眼睛很大、她的嘴巴很小等。)2. 请幼儿说说你喜欢的人是谁,他长的什么样?引导幼儿说出人物的典型特征。3. 幼儿仔细观察自己喜欢的人的脸,再与画册中的人物相比较,看与哪一张脸相同。4. 请幼儿为自己喜欢的人画一张像,引导幼儿把人物的典型特征表现出来。二、作画。1. 幼儿开始作画,教师为作画有困难的幼儿做指导。2. 出示范画,请幼儿欣赏并说出范画中人物的典型特征。引导幼儿抓住典型特3. 征大胆表现。
二、活动目标:1.初步认识、了解消毒、预防非典的物品,扩展有关“防非”的知识。 2.在购物过程中尝试解决简单的数量问题。 3.满足幼儿为妈妈做事的愿望。三、活动准备: 1.防非物品、其他食品包装盒。 2.每一物品上贴上价格标签(5以内) 3.购物篮,自制纸币。四、活动过程:(一). 导入 “母亲节”我们想了很多办法为妈妈做事,现在“母亲节”过了,我们还要为妈妈做事吗?为什么?(二). 启发游戏 1. 以妈妈的烦恼(妈妈想买预防非典的消毒等用品和增加抵抗能力的食品,可是妈妈上班没时间)启发幼儿帮妈妈购物。
活动准备:超市货架、食品(标有价格和保质期)、购物盘、评判牌活动过程:一、引起兴趣,导入主题时间过得真快,一转眼三年过去了,你们就要毕业了,老师真舍不得你们,为了让你们和老师一起记住在幼儿园的快乐时光,老师想和你们一起举行一次毕业郊游活动,你们说好吗?(好) 1.今天我们就进行一个健康郊游餐比赛,为我们的毕业郊游配一份健康郊游餐! 2.那怎样的郊游午餐才是健康的呢? 幼儿自由的讲述,教师作相应的归纳:刚才小朋友们说了很多,要有主食、水果、水、这样搭配才合理有营养。还有选的食品要新鲜、要安全,这样才健康。 3.接下来,我们就进行健康郊游餐比赛,请每组小朋友,拿着桌上的盘子,到超市挑选健康郊游餐,在挑选前请听清规则,在五分钟内挑选一份够一个人吃的午餐,选购的食品不能超过十元钱,选购时要注意营养、新鲜、安全。 幼儿选购时老师做适时的观察,观察每组幼儿选购时的侧重点,以便老师做观察。
准备: 1、经验准备:幼儿解吸烟对人体健康的危害。 2、材料准备: 教师:棉花、香烟、瓶子; 幼儿:大型积木,剪刀,纸,食品包装,记号笔,禁烟标志等。 过程: 一、通过做实验,感受空气的重要性。 1、捏紧鼻子,闭紧嘴巴,说一说有什么感觉?(不能呼吸感到非常的难受。) 2、深呼吸一次,现在感到怎么样?(感受空气对人的重要性。) 二、感知香烟对人类的危害。 1
主题目标1、对幼儿园产生亲切感和安全感,逐渐习惯和适应集体生活。2、喜欢自己的朋友,体验与老师、同伴一起活动、分享快乐。活动内容:布袋偶表演《高高兴兴上幼儿园》活动目标:1、知道自己长大了,要上幼儿园做游戏、学本领。2、喜欢幼儿园,愿意来幼儿园。活动准备:布袋小鸭、幼儿园大门(积木拼搭)
二、 活动目标:1、 了解合理的饮食结构。2、 为自己设计营养食谱。三、 活动准备:1、 挂图第9号《营养结构》2、 制作营养食谱的纸、笔人手一份。3、 自制健康印章一枚,图案为太阳或灯泡。
活动准备: 1、每人镜子一面,调味品一份(包括酸、甜、苦、辣、咸),吸管一根。 2、电脑、投影仪、多媒体课件。 活动过程: 导入,引出主题 1、教师和幼儿一起玩舌发出声音。 2、提问:是谁帮助我们发出这些有趣的声音? 认识舌头各部分的名称及部位 1、师:对了,是我们的舌头,你有没有仔细的观察过它?今天老师为每个小朋友准备了一面镜子,请你仔细地观察一下自己的舌头,看看它的上面、下面有什么。 2、幼儿边观察边发言。 3、教师把自己的手当作舌头演示,幼儿认识各部分名称:舌头后面连着喉咙的部分叫“舌根”,舌根的前面部分叫“舌体”,舌体的最前面叫“舌尖”,舌体的上面叫“舌背”,舌背上有舌乳头、舌苔,舌体的下面叫“舌腹”,舌腹上有舌系带、血管和突起。
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
2.为了表现出我国航母舰载战斗机首架次成功着舰时惊心动魄的气势,表现出舰载机成功着舰后国人的喜悦,作者在语言上也下了一番功夫,请你结合课文做具体分析。明确:(1)运用修辞手法,描绘着舰场面。“声如千骑疾,气卷万山来。”运用对偶、夸张和比喻的修辞手法,增强文章气势,生动形象地表现了舰载机着舰时的浩大声势,具有感染力。(2)运用细节描写,生动形象地描绘出舰载机着舰的情形。如“震耳欲聋”“轰鸣”描绘出舰载机着舰时巨大的声音,“眨眼之间”“刹那间”“疾如闪电”等词描绘出舰载机着舰时的震撼场面。“牢牢地”“稳稳地”生动地写出了我国舰载机着舰技术的成熟和飞行员操作技能的娴熟。“定格了一个象征胜利的巨大‘V’字”的特写镜头,既是对当时情景的生动再现,也表现了作者对我国航母舰载战斗机首架次成功着舰的喜悦和自豪。
1、认真读课文,边读边想课文每个自然段都写了什么,给课文划分段落。2、学生交流段落划分,说明分段理由。3、教师对照板书进行小结:这篇课文思路特别明晰,作者开门见山提出自己的观点,明确指出“真理诞生于一百个问号之后”这句话本身就是“真理”,然后概括地指出在千百年来的科学技术发展史上,那些定理、定律、学说都是在发现者、创造者解答了“一百个问号之后”才获得的,由此引出科学发展史上的三个有代表性的确凿事例,之后对三个典型事例作结,强调这三个事例“都是很平常的事情”,却从中发现了真理,最后指出科学发现的“偶然机遇”只能给有准备的人,而不会给任何一个懒汉。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。