补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
教学目标:1.引导幼儿参与学习活动,经历十几减几计算方法的探索与算理的建构过程。2.根据 11 至 20 各数的组成,掌握 20 以内不进位加法和不进位减法的计算方法。教学重点:十几减几(不退位)的计算。教学过程:一、复习导入复习10以内的数的组合,11~20各数的组成。1.碰球游戏导入,复习10的分解组合2.老师分别出示数字卡片:14、17、12、11。幼儿说数的组成。
在本月开展多元智能创意课程《变变变,长大了》主题活动时,有一个分题活动是“身体的秘密”,孩子们一看到书中男女小朋友入厕的情景,立即炸开了锅。同时,他们对两性问题表现出的早熟倾向引起了我们的关注:有的孩子在课后扭住我提了很多他关于成人生活的困惑;还有的男孩子竟忍不住好奇,偷偷跑进女厕所想一窥究竟……(略)于是,我们决定对孩子们现阶段最为关注的话题作出正面的、积极的回应,同时对学前教育阶段如何开展启蒙“性教育”进行探索,生成了本次活动“身体的秘密”。活动目标:1、科学、正确地面对性话题,学会尊重自己和别人的身体。2、有初步的自我保护意识,了解基本的防卫方法。3、引导幼儿积极地思维,自由地表达。活动准备:1、幼儿的准备:活动前的调查记录,对两性的区别有了初步的认识;2、教师的准备:l 搜集大量的性教育资料(今日说法、《画说性》等),以应对课堂上孩子们的突发提问;l 角色分工、互助协调; 布置有关两性知识的活动区角(包括人物、动物),提供较为丰富安全的可操作材料。活动过程: 一、谈话引入,讲解什么是“性”。1、请小朋友以性别分为男女两组,两名老师明确分工。幼儿阐述自己对不同性别的看法,即“男女有什么区别”。2、提问引发思考:什么是“性”?小结:“性”是和我们的身体密切相关的,不关是从头发的长短就能判断性别的,更重要的是我们身体的某些部位,是代表着性别差异的。是那些部位呢?就是我们穿衣服遮起来的部位。
教师是课程的执行者,要吃透主题精神,理解目标、框架,设计预设活动。教师是课程的设计者,要观察幼儿兴趣、积极回应幼儿,师生共同生成主题。教师捕捉本班幼儿的热点、需要和经验生成各班特有的主题,在实施共同的主题时,各班教师根据幼儿的需要和经验生成不同的小主题。每天自由活动时,幼儿总拿出不少玩具车玩,边玩边说“这是我吃麦当劳换来的,这是米老鼠车”;有的说“这是我妈妈给我买的坦克车”;还有一个小朋友对汽车特别感兴趣,每天说“这是宝马车,那是别克”。这时我发现孩子对车有了一定的生活经验,加上孩子对车有浓厚的兴趣,于是开始建构初步小汽车的主题网络,网络的建构依据是小班 幼儿的认知特点。幼儿比较关注外形特征等表面的问题,如马路上常见车的名字、几种特殊车的用途等,后来又根据实施情况对主题网络进行修改,增设了坐车要用的“一卡通”,不同颜色的出租车名等。
2、学习使用剪刀、筷子、笔、刀、游戏棒等物品的正确方法。 这节课我共分四方面来进行教学,首先让幼儿观察了解尖利物品,知道名称,了解它的用途。因为幼儿的人数较多,怕在分组活动中出现意外,所以我只准备了一份的物品让幼儿进行观察,课堂的秩序较好。在出示物品时,幼儿都能积极的举手告诉我这些物品的名称,从这里可以看出幼儿对于这些东西是十分的熟悉的;并对它们的用途也是比较了解的,大多数的幼儿一次就把所有物品的用途都说出来了,但是对于他们的共同之处幼儿的回答就不太完整,虽然知道但是不能用一个较好的词语来进行概括,从这里我发现我班幼儿在语言发展方面,词汇还是不够丰富需要加强。
2、按舞蹈情节记忆动作顺序。 3、初步体验新疆舞蹈的欢快与民族特色。 活动准备: 1、新疆娃娃或新疆帽一顶。 2、人手一件打击乐器。 活动过程: 1、在《水果丰收》乐曲伴奏下,复习踵趾步及摘果子等动作。 2、了解《葡萄丰收》舞蹈情节。 (1)教师出示新疆娃娃或新疆帽,幼儿观察并说出这是新疆小朋友以及新疆人最爱跳舞的特点。 (2)教师讲解舞蹈情节。 3、学跳舞蹈。 (1)教师示范,幼儿欣赏。 (2)教师再次舞蹈,幼儿观察并说出老师跳了些什么动作。 (3)先练习“手”的动作。在座位上坐着做、站起来站在椅子前面做。 (4)重点练习踮步与进退步。 (5)教师边说故事情节,边示范舞蹈,幼儿跟着老师学习舞蹈。 (6)重点练习在学习过程中有困难的动作,在继续完整练习舞蹈。 (7)教师或一些幼儿戴新疆帽舞蹈,其余幼儿欣赏并拍手伴奏,体验新疆帽舞蹈的欢快情绪和民族特色。
孩子到了大班,有了一定的“舞”的艺术表现能力。对音乐的感受力、想象力有了较大地提高,动手操作能力也在不断完善。特别喜欢自己探索、创造,并有一定的表演欲望。因此,我根据大班孩子的特点设计了这个以幼儿舞蹈为主的综合艺术活动。活动融合了手工、动作、舞蹈、即兴创编、画舞谱,还有本民族音乐、舞蹈的学习和体验的内容。对于大班的孩子,不要求舞姿,只要通过探索-发现、操作-尝试、感受-体验、即兴-创作等活动来品味“舞”的愉悦。 安排的活动流程为:准备活动——探索、发现——结伴创编——展现欣赏一、活动目标: 1、探索发现:彩纸表现的可能性,尝试“画”简单的舞谱。 2、提高身体协调能力,对合作表演产生兴趣。 3、体验飘逸和“舞”的愉悦。二、材料及环境设计: 1、录有欢快本民族音乐的磁带一盘。 2、彩色皱纹纸、竹筷若干。 3、小脚图谱、小剪刀、胶布等。 4、为幼儿提供能自由活动的较宽松的空间。
准备:1、名画课件:大碗岛的星期天 2、画纸、绘画工具人手一份。 3、事先和幼儿一起认识对比色。 4、事先带幼儿到田野里去秋游。活动过程: 一、导入。 师:小朋友,你们以前画过人吗?你画的人是什么样子的?是正面、背面还是侧面? 幼儿自由回答。二、演示名画《大碗岛的星期天》,引导幼儿欣赏。 师:今天老师也带来了一幅人物画,请你来找一找画面中的人是面向哪里的。 教师播放课件让幼儿欣赏,提问: (1)你在画中看到了什么? (2)这些人在干什么?他们有些什么样的姿态?你能不能表演一下? (3)这是什么季节?你能猜出他们在什么地方?有什么样的风光?
2.感受歌曲诙谐,幽默的特点。 准备:图片,磁带,录音,铃鼓,附点节奏图示 过程:一、激发幼儿兴趣。 小朋友,你们看,今天谁也来和大家一起做游戏了?(出示丁丁) 这个小朋友的名字叫丁丁,你们知道他最喜欢做什么了? 丁丁今天还带来几张图画,请小朋友帮忙看一下,画得怎么样? 二、通过图片理解歌词。 1、幼儿观察后集体讲述 “请你们看一下,画了些什么?画得怎么样?(引导幼儿用歌中的句子来回答。) 2、幼儿回答后,教师说:“我们把丁丁的故事编成几句话来说一说吧!”(引导幼儿按歌曲节奏来学说歌词。)
活动目标:1.通过观察“天上”的星星,让幼儿了解拖着“长尾巴”的星星——彗星。2.培养幼儿利用旧物品制作玩具,废物利用,发扬勤俭节约的好传统。3.在做“彗星”的基础上通过动脑筋,玩“彗星”练习,培养幼儿发散性思维能力。4.培养幼儿对科学的热爱及探究宇宙的兴趣,懂得做事要持之以恒。活动准备:1.电脑,有关星星的教学软件。2.洗净晾干的破旧布头。3.人手一只洗净的旧弹力袜,一块吸铁石,3-5根40cm长的塑料包装绳。4.人手一只自制“彗星”,两块磁性黑板做太阳。