由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
解:(1)设x分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:两人一共跑了5圈.(2)设x分钟后两人第一次相遇,由题意,得360x+240x=400.解得x=23(分钟)=40(秒).答:40秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计追赶小明→行程问题→相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.
这个故事叙述了老鼠三兄弟看到鼠妹妹穿着破衣服就悄悄地让裁缝把漂亮的布做成了女式服装这样一件事,非常温馨和感人。故事所表达的精神对道德意识还往往处于自我中心的当今的独生子女应该具有较强的心灵震动。这一形象对中班幼儿来讲是能够接受和体验的,有利于培养他们正确的道德态度和良好的道德情感。容易引起幼儿的学习兴趣,又可以扩展孩子的词汇量。其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合中班幼儿的年龄特点,又符合孩子的现实需要。整篇童话语言通俗,主题单纯,充满生活情趣。更巧妙的是:作者设置了一个悬念“你给我做……”做什么呢?作者没有直接把三兄弟让裁缝做女式服装的对话告诉幼儿,这留给幼儿一个想象、思考的空间。中班幼儿有意注意开始发展,复杂句发展较快,词汇增加,能用完整、较连贯的语言表达自己想说的事,喜欢欣赏不同形式的文学作品,理解作品的人物形象,用恰当的语言、动作、绘画形式表现自己对作品的理解和体验,扩展想象,尝试创编。希望通过这个故事来提高幼儿对文学作品的感受和表现能力,并寻求不同角度的思维方式。鼓励幼儿能大胆地想象,表现自己的情感。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。“两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
二、说活动教材 这个故事叙述了老鼠三兄弟看到鼠妹妹穿着破衣服就悄悄地让裁缝把漂亮的布做成了女式服装这样一件事,非常温馨和感人。故事所表达的精神对道德意识还往往处于自我中心的当今的独生子女应该具有较强的心灵震动。这一形象对中班幼儿来讲是能够接受和体验的,有利于培养他们正确的道德态度和良好的道德情感。容易引起幼儿的学习兴趣,又可以扩展孩子的词汇量。其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合中班幼儿的年龄特点,又符合孩子的现实需要。 整篇童话语言通俗,主题单纯,充满生活情趣。更巧妙的是:作者设置了一个悬念“你给我做……”做什么呢?作者没有直接把三兄弟让裁缝做女式服装的对话告诉幼儿,这留给幼儿一个想像、思考的空间。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。 “两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
对比分析为什么刚才咱们从不同的3个数字中选出两个,可以摆成6个不同的两位数,而现在三个同学每两个握一次手,就一共只握了3次呢?(学生讨论,发表意见)(握手不存在调换位置的情况,跟顺序无关,而排列数,位置调换就变成另一个数,与顺序有关。)三、实践应用,巩固新知师引导:同学们今天说得太精彩了!那我们就进数学广角痛痛快快地玩玩吧!(出示课件)问:进去吗?(再次打开课件,欣赏)1、快乐狗活动室(练习二十三第2题)质疑:咦,机灵猫,兰兰他们去哪了?呵,机灵猫猫想要运动运动,就来到了快乐狗活动室。(课件展示)机灵猫就是机灵猫,看他们打球还想到问题了:如果每两个人打一场乒乓球比赛,他们三人一共要打多少场比赛呢?谁能很快说出来!(学生分析,指名说说)2、小喜鹊超市(练习二十三第1题)
以引导学生的饿练习兴趣,再让学生根据画面内容提出用乘法计算的问题,之后再让学生小组合作交流。然后汇集学生提出的问题,并和学生一起评价提出的问题。再让学生独立解决提出的用乘法计算的问题。并在组内进行交流评价。让学生积极主动地经历观察发现问题——提出问题——解决问题的过程,感受数学在日常生活中的作用,获得一些初步的提出用乘法计算的问题和解决问题实践活动的经验。5,让学生充分说说你有什么收获。整堂课的设计,着重体现了以学生为主体,教师是学生的组织者、引导者、合作者。在整个教学过程中,主要让学生乐学,爱学,使学生从学会变成“我要学,我会学,”激发了学生的学习兴趣,培养其探究能力和自主学习的意识,同时,在不断运用数学知识解决身边的数学问题中,逐步发展学生的应用意识。
【活动目的】 1、通过幼儿动手操作,了解总数与部分数的概念以及它你之间的关系。 2、在学习了10以内加减法的基础上,幼儿能书面练习10以内数的加减法式子中的填空题。 【活动准备】 教具:装好皮球的篓子(大皮球4个、小皮球2个);装好水果的篓子(苹果7个、梨子3个) 学具:每人一个“小动物卡片”袋(两个品种,多少不一,总数不越过10);每人一盒橡皮泥;每人一支铅笔和一个数学练习本。 【活动过程】 一、教师出示装好皮球的小篓子,让幼儿说说篓子里有什么、有多少、有什么异同。引导幼儿说出总数,然后让幼儿把水果分类,并说出:“一部分是大皮球,有4个;一部分是小皮球,有2个。”让幼儿初步理解总体与部分的概念,并列出加减法算式:如 4+2=6 2+4=6 6-4=2 6-2=4 二、教师出示装好水果的小篓子,让幼儿说说篓子里有什么、有多少、有什么异同。幼儿说出总数,然后让幼儿把水果分类,并说出:“一部分是苹果,有7个;一部分是梨子,有3个。”进一步让幼儿理解总体与部分的概念,并列出加减法式子。如: 7+3=10 3+7=10 10-7=3 10-3=7
本节课在我们大班年级组进行了一次研讨活动,本次的教学活动是在上次的基础上进行了修改,在开始部分我就利用幼儿园老师相同款式的两辆汽车直接导入,从而让幼儿想到车牌号码孩子们比较熟悉的数字组合,让本次数学活动渗透到我们平时的生活中,让孩子们对本次活动产生兴趣。使数学活动生活化。在最后一部分我以孩子们生活中随处可见的数字为内容,让孩子们发现生活中的数字,初步了解它们的不同用途,并且学会运用数字解决生活中的一些实际问题,从中体验活动的乐趣。这样不仅激发了孩子对数字的兴趣,也培养了孩子积极关注身边事物的情感态度。